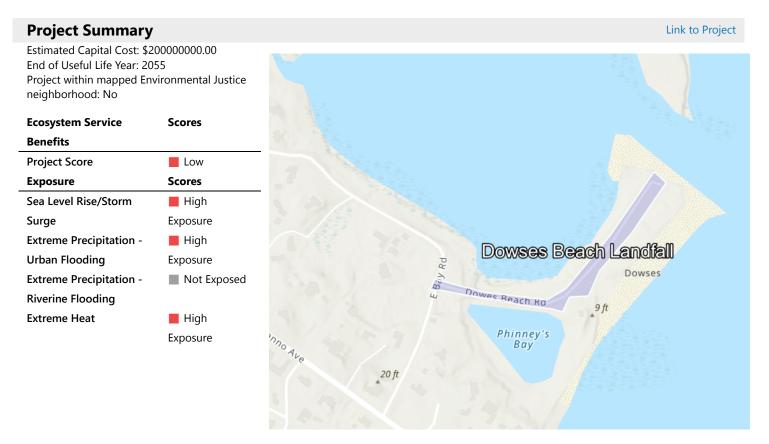
Attachment K


Updated RMAT Report

K1 Dowses Beach Landfall

Climate Resilience Design Standards Tool Project Report

Dowses Beach Landfall

Date Created: 4/14/2023 2:21:33 PMCreated By: agood9412Date Report Generated: 5/2/2023 12:16:32 PMTool Version: Version 1.2Project Contact Information: Albert Good (agood@epsilonassociates.com)

Asset Preliminary Climate Risk Rating							
Asset Risk	Sea Level Rise/Storm Surge	Extreme Precipitation - Urban Flooding	Extreme Precipitation - Riverine Flooding		Extreme Heat		
Dowses Beach Landfall	High Risk	High Risk	Low	Risk	High	Risk	
Climate Resilience Design Stand	lards Summary						
	Target Planning Horizon	Intermediate Planning Horizon	Percentile	Return Per	iod	Tier	
Sea Level Rise/Storm Surge		5					
Dowses Beach Landfall	2050			100-yr (1%)			
Extreme Precipitation							
Dowses Beach Landfall	2050			25-yr (4%)		Tier 2	
Extreme Heat							
Dowses Beach Landfall	2050		90th			Tier 2	

Scoring Rationale - Project Exposure Score

The purpose of the Exposure Score output is to provide a preliminary assessment of whether the overall project site and subsequent assets are exposed to impacts of natural hazard events and/or future impacts of climate change. For each climate parameter, the Tool will calculate one of the following exposure ratings: Not Exposed, Low Exposure, Moderate Exposure, or High Exposure. The rationale behind the exposure rating is provided below.

Sea Level Rise/Storm Surge

This project received a "High Exposure" because of the following:

- Located within the predicted mean high water shoreline by 2030
- Exposed to the 1% annual coastal flood event as early as 2030
- Historic coastal flooding at project site

Extreme Precipitation - Urban Flooding

This project received a "High Exposure" because of the following:

- Historic flooding at the project site
- Increased impervious area
- Maximum annual daily rainfall exceeds 10 inches within the overall project's useful life
- Existing impervious area of the project site is greater than 50%

Extreme Precipitation - Riverine Flooding

This project received a "Not Exposed" because of the following:

- No historic riverine flooding at project site
- The project is not within a mapped FEMA floodplain [outside of the Massachusetts Coast Flood Risk Model (MC-FRM)]
- Project is more than 500ft from a waterbody
- Project is not likely susceptible to riverine erosion

Extreme Heat

This project received a "High Exposure" because of the following:

- Increased impervious area
- Existing trees are being removed as part of the proposed project
- Existing impervious area of the project site is greater than 50%
- Located within 100 ft of existing water body
- < 10 day increase in days over 90 deg. F within project's useful life

Scoring Rationale - Asset Preliminary Climate Risk Rating

A Preliminary Climate Risk Rating is determined for each infrastructure and building asset by considering the overall project Exposure Score and responses to Step 4 questions provided by the user in the Tool. Natural Resource assets do not receive a risk rating. The following factors are what influenced the risk ratings for each asset.

Asset - Dowses Beach Landfall

Primary asset criticality factors influencing risk ratings for this asset:

- · Asset may inaccessible/inoperable for more than a day but less than a week after natural hazard event
- Loss/inoperability of the asset would have state-wide or greater impacts
- The infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations.
- · Inoperability of the asset would not be expected to result in injuries
- Cost to replace is between \$10 million and \$30 million
- There are no hazardous materials in the asset

Project Climate Resilience Design Standards Output

Climate Resilience Design Standards and Guidance are recommended for each asset and climate parameter. The Design Standards for each climate parameter include the following: recommended planning horizon (target and/or intermediate), recommended return period (Sea Level Rise/Storm Surge and Precipitation) or percentile (Heat), and a list of applicable design criteria that are likely to be affected by climate change. Some design criteria have numerical values associated with the recommended return period and planning horizon, while others have tiered methodologies with step-by-step instructions on how to estimate design values given the other recommended design standards.

Asset: Dowses Beach Landfall

Sea Level Rise/Storm Surge

Target Planning Horizon: 2050 Intermediate Planning Horizon: Not Applicable Return Period: 100-yr (1%)

LIMITATIONS: The recommended Climate Resilience Design Standards for the Sea Level Rise / Storm Surge Design Criteria are based on the user drawn polygon and relationships as defined in the Supporting Documents. The projected values provided through the Tool are based on the Massachusetts Coast Flood Risk Model (MC-FRM) outputs as of 9/13/2021, which included GIS-based data for three planning horizons (2030, 2050, 2070) and six return periods (0.1%, 0.2%, 0.5%, 1%, 2%, 5%). These values are projections based on assumptions as defined in the model and the LiDAR used at the time. For additional information on the MC-FRM, review the additional resources provided on the Start Here page.

The projected values, Standards, and Guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence.

Applicable Design Criteria

Projected Tidal Datums: APPLICABLE

Donning Horizon								
	(ft-NAVD88)							
2050	4.6	4.3	2.6	1.0	0.8			

Projected Water Surface Elevation: APPLICABLE

Asset Name	Recommended Planning Horizon	Recommended Return Period		Max Min Area Weighted Averag				
Asset Name	Recommended Flamming Horizon				(ft - NAVD88)			
Dowses Beach Landfall	2050	1% (100-Year)	14.1	13.9	13.9			

Projected Wave Action Water Elevation: APPLICABLE

Asset Name	Performended Planning Horizon	Recommended Return Period		Min	Area Weighted Average
Asset Name	Recommended Flamming Horizon				(ft - NAVD88)
Dowses Beach Landfall	2050	1% (100-Year)	18.5	16.1	17.1

Projected Wave Heights: APPLICABLE

Accot Nomo	Personmended Dispusing Herizon	Recommended Return Period		(Min	Area	a Weighted Average
Asset Name						(Feet)
Dowses Beach Landfall	2050	1% (100-Year)	6.0	3.0	4.3	

ATTENTION: This project intersects areas influenced by wave overtopping based flooding. These areas are where flooding is caused by intermittent pulses that come from wave run-up and overtopping at a coastal structure. Additional site analyses are recommended to establish design values associated with design criteria.

Projected Duration of Flooding: APPLICABLE Methodology to Estimate Projected Values

Projected Design Flood Velocity: APPLICABLE Methodology to Estimate Projected Values

Projected Scour & Erosion: APPLICABLE Methodology to Estimate Projected Values High Risk

Infrastructure

High Risk

Target Planning Horizon: 2050 Return Period: 25-yr (4%)

LIMITATIONS: The recommended Standards for Total Precipitation Depth & Peak Intensity are determined by the user drawn polygon and relationships as defined in the Supporting Documents. The projected Total Precipitation Depth values provided through the Tool are based on the climate projections developed by Cornell University as part of EEA's Massachusetts Climate and Hydrologic Risk Project, GIS-based data as of 10/15/21. For additional information on the methodology of these precipitation outputs, see Supporting Documents.

While Total Precipitation Depth & Peak Intensity for 24-hour Design Storms are useful to inform planning and design, it is recommended to also consider additional longer- and shorter-duration precipitation events and intensities in accordance with best practices. Longer-duration, lower-intensity storms allow time for infiltration and reduce the load on infrastructure over the duration of the storm. Shorter-duration, higher-intensity storms often have higher runoff volumes because the water does not have enough time to infiltrate infrastructure systems (e.g., catch basins) and may overflow or back up during such storms, resulting in flooding. In the Northeast, short-duration high intensity rain events are becoming more frequent, and there is often little early warning for these events, making it difficult to plan operationally. While the Tool does not provide recommended design standards for these scenarios, users should still consider both short- and long-duration precipitation events and how they may impact the asset.

The projected values, standards, and guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence

Applicable Design Criteria

Tiered Methodology: Tier 2

Projected Total Precipitation Depth & Peak Intensity for 24-hr Design Storms: APPLICABLE

Asset Name	Recommended	Recommended Return	Projected 24-hr Total	Step-by-Step Methodology
	Planning Horizon	Period (Design Storm)	Precipitation Depth (inches)	for Peak Intensity
Dowses Beach Landfall	2050	25-Year (4%)	1.5	Downloadable Methodology PDF

Projected Riverine Peak Discharge & Peak Flood Elevation: NOT APPLICABLE

Extreme Heat

Target Planning Horizon: 2050 Percentile: 90th Percentile

Applicable Design Criteria

Tiered Methodology: Tier 2

Projected Annual/Summer/Winter Average Temperatures: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Heat Index: APPLICABLE Methodology to Estimate Projected Values : Tier 2

Projected Growing Degree Days: NOT APPLICABLE

Projected Days Per Year With Max Temp > 95°F, >90°F, <32°F: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Number of Heat Waves Per Year & Average Heat Wave Duration: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Cooling Degree Days & Heating Degree Days (base = 65°F): NOT APPLICABLE

Sea Level Rise/Storm Surge Project Maps

The following three maps illustrate the Projected Water Surface Elevation for the 2030, 2050, and 2070 planning horizons corresponding to the lowest return period (largest design storm) recommended across the assets identified for this project in the Tool. For projects that only have Natural Resource assets, the maps will show the Projected Water Surface Elevations corresponding to the 5% (20-year) return period. Refer to the Climate Resilience Design Standards Output - Sea Level Rise/Storm Surge Section for additional values associated with other assets. The maps include the project area as drawn by the user with a 0.1 mile minimum buffer, but do not reflect the location of specific assets on the site.

LIMITATIONS: The recommended Climate Resilience Design Standards for the Sea Level Rise / Storm Surge Design Criteria are based on the user drawn polygon and relationships as defined in the Supporting Documents. The projected values and maps provided through the Tool are based on the Massachusetts Coast Flood Risk Model (MC-FRM) outputs as of 9/13/2021, which included GIS-based data for three planning horizons (2030, 2050, 2070) and six return periods (0.1%, 0.2%, 0.5%, 1%, 2%, 5%). These values are projections based on assumptions as defined in the model and the LiDAR used at the time. For additional information on the MC-FRM, review the additional resources provided on the Start Here page.

The projected values, maps, Standards, and Guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence.

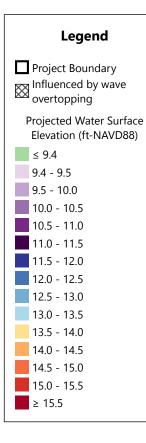
≥ 15.5	14.0 - 14.5 14.5 - 15.0	12.0 - 12.5 12.5 - 13.0 13.0 - 13.5 13.5 - 14.0	LegendProject BoundaryInfluenced by waveovertoppingProjected Water SurfaceElevation (ft-NAVD88) ≤ 9.4 $9.4 - 9.5$ $9.5 - 10.0$ $10.0 - 10.5$ $10.5 - 11.0$ $11.0 - 11.5$ $11.5 - 12.0$	-
	Project Name: Dowses Beach Landfall Location (Town): Barnstable		2030	
Asset Name	1 Landfall	Proje		
Planning Horizon Return Perioc	0.25 0.5 1.0 Miles	Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 1% (10	2050	
		itandards Tool: Design Criteria m Map: 1% (100-yr)		
Max Min Area Weighted Average (ft-NAVD88)	Created by: agood9412 Date Created: 4/14/2023 Tool Version: 1.3	ŀ-yr)	2070	
	z			

ATTENTION: This project intersects areas influenced by wave overtopping based flooding. These areas are where flooding is caused by intermittent pulses that come from wave run-up and overtopping at a coastal structure. Additional site analyses are recommended to establish design values associated with design criteria.

Dowses Beach Landfall

2050 2070

1% (100-yr) 1% (100-yr) 1% (100-yr)

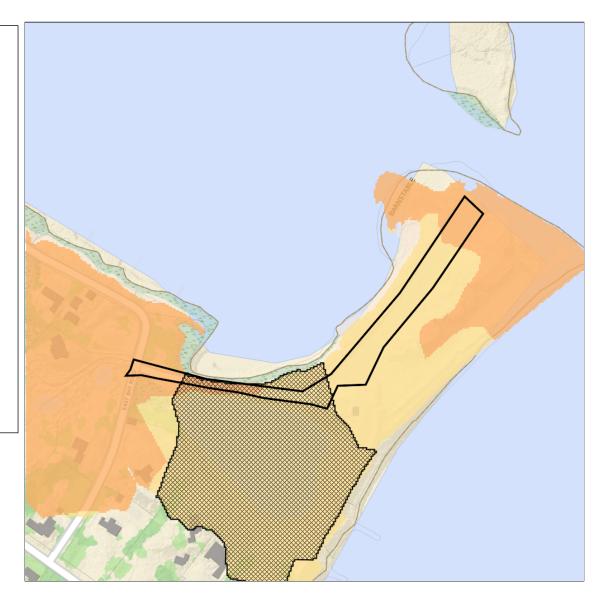

15.5 15.3

2030

9.6 9.4 14.1 13.9

9.4 13.9 15.3

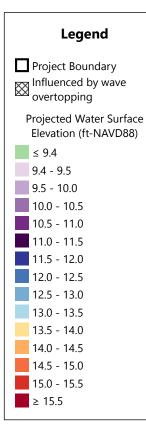
(ft-NAVD88)

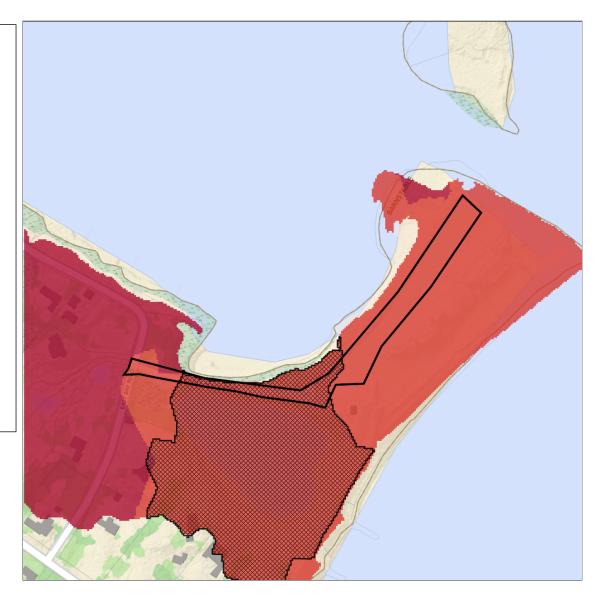


Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2030, 1% (100-yr)

Tool version: 1.3	ect Name: Dowses Beac tion (Town): Barnstable	0.05 0.1	0.1 0.25 Miles			Created by: agood9412 Date Created: 4/14/202 Tool Version: 1.3	/
Asset Name Planning Horizon Return Period Max Min Area Weighted Average		e Planning Horizo	n Return Period	Max	Min		
Dowses Beach Landfall 2030 1% (100-yr) 9.6 9.4 9.4				0.6	0.4		

ATTENTION: This project intersects areas influenced by wave overtopping based flooding. These areas are where flooding is caused by intermittent pulses that come from wave run-up and overtopping at a coastal structure. Additional site analyses are recommended to establish design values associated with design criteria.





Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2050, 1% (100-yr)

Project Name: Dowses E Location (Town): Barnsta		0.05 0.1 0).25 ■Miles		Created by: agood9412 Date Created: 4/14/202 Tool Version: 1.3	/
	Asset Name	Planning Horizon	Poturn Doriod	Max Min	Area Weighted Average	
	Asset Name		Keturn Perioa		(ft-NAVD88)	
	Dowses Beach Landfall	2050	1% (100-yr)	14.1 13.9	13.9	

ATTENTION: This project intersects areas influenced by wave overtopping based flooding. These areas are where flooding is caused by intermittent pulses that come from wave run-up and overtopping at a coastal structure. Additional site analyses are recommended to establish design values associated with design criteria.

Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2070, 1% (100-yr)

Project Name: Dowses Beach Landfall Location (Town): Barnstable		0.05 0.1 0).25 ■Miles		Created by: agood9412 Date Created: 4/14/2023 Tool Version: 1.3	/
	Asset Name	Planning Horizon	Return Period	Max Min	Area Weighted Average (ft-NAVD88)	
	Dowses Beach Landfall	2070	1% (100-yr)	15.5 15.3	15.3	

ATTENTION: This project intersects areas influenced by wave overtopping based flooding. These areas are where flooding is caused by intermittent pulses that come from wave run-up and overtopping at a coastal structure. Additional site analyses are recommended to establish design values associated with design criteria.

Project Inputs

Core Project Information

Name:

Given the expected useful life of the project, through what year do you estimate the project to last (i.e. before a major reconstruction/renovation)? Location of Project: Estimated Capital Cost: Who is the Submitting Entity?

Is this project being submitted as part of a state grant application? Which grant program?

What stage are you in your project lifecycle?

Is climate resiliency a core objective of this project?

Is this project being submitted as part of the state capital planning process?

Is this project being submitted as part of a regulatory review process or permitting? Brief Project Description: Dowses Beach Landfall 2055

Barnstable \$200,000,000 Private Other Epsilon Associates, Inc. Albert Good (agood@epsilonassociates.com) No

Permitting No Yes

Commonwealth Wind, LLC, proposes to develop an offshore wind energy generation facility in federal waters within the southern portion of BOEM Lease Area OCS-A 0534 along with associated offshore and onshore cabling and a new onshore substation. The proposed offshore export cables will be installed beneath the seafloor via jetplow and will transition to shore via horizontal directional drilling (HDD) at the Dowses Beach Parking Lot. The onshore export cables will be installed entirely underground in a concrete duct bank primarily within existing roadway rights-of-way. The New England Wind 2 Connector is the Massachusetts-jurisdictional elements of the Commonwealth Wind Project and is necessary to deliver the offshore wind power generated by the Commonwealth Wind Project to the ISO-NE electrical grid. The Project will also provide an opportunity for the installation of a municipal sewer system in advance of the current planned schedule which will reduce nitrogen loading from septic systems. In addition to MEPA, the Project will require review by the following state, regional, and local entities: EFSB; DPU; MassDEP; MassDOT; MBUAR; NHESP; MHC; DMF; CCC; OKH Historic District Committee; MVC, and the Towns of Barnstable, Edgartown, Mashpee, and Nantucket Conservation Commissions and Town of Barnstable Town Council, DPW, Planning/Zoning, and Tree Warden. Federal agency reviews and approvals include BOEM, EPA, USACE, NMFS, USCG, FAA, and CZM.

Project Submission Comments:

Project Ecosystem Service Benefits

Factors Influencing Output

- ✓ Project promotes decarbonization
- ✓ Project filters stormwater using green infrastructure
- ✓ Project improves water quality
- ✓ Project improves air quality

Factors to Improve Output

- ✓ Incorporate nature-based solutions that may provide flood protection
- ✓ Incorporate nature-based solutions that may reduce storm damage

✓ Protect public water supply by reducing the risk of contamination, pollution, and/or runoff of surface and groundwater sources used for human consumption

- ✓ Incorporate green infrastructure or nature-based solutions that recharge groundwater
- \checkmark Incorporate nature-based solutions that sequester carbon carbon
- ✓ Increase biodiversity, protect critical habitat for species, manage invasive populations, and/or provide connectivity to other habitats
- ✓ Preserve, enhance, and/or restore coastal shellfish habitats
- ✓ Incorporate vegetation that provides pollinator habitat
- ✓ Identify opportunities to remediate existing sources of pollution
- ✓ Provide opportunities for passive and/or active recreation through open space
- ✓ Increase plants, trees, and/or other vegetation to provide oxygen production
- ✓ Identify opportunities to prevent pollutants from impacting ecosystems

Is the primary purpose of this project ecological restoration?

No

Project Benefits	
Provides flood protection through nature-based solutions	No
Reduces storm damage	No
Recharges groundwater	No
Protects public water supply	No
Filters stormwater using green infrastructure	Yes
Improves water quality	Yes
Promotes decarbonization	Yes
Enables carbon sequestration	No
Provides oxygen production	No
Improves air quality	Yes
Prevents pollution	No
Remediates existing sources of pollution	No
Protects fisheries, wildlife, and plant habitat	No
Protects land containing shellfish	No
Provides pollinator habitat	No
Provides recreation	No
Provides cultural resources/education	No
Project Climate Exposure	
Is the primary purpose of this project ecological restoration?	No
Does the project site have a history of coastal flooding?	Yes
Does the project site have a history of flooding during extreme precipitation events	Yes

boes the project site have a history of coustal hooding.	105
Does the project site have a history of flooding during extreme precipitation events	Yes
(unrelated to water/sewer damages)?	
Does the project site have a history of riverine flooding?	No
Does the project result in a net increase in impervious area of the site?	Yes
Are existing trees being removed as part of the proposed project?	Yes

Project Assets

Asset: Dowses Beach Landfall Asset Type: Utility Infrastructure Asset Sub-Type: Energy (electric, gas, petroleum, renewable) Construction Type: New Construction Construction Year: 2025 Useful Life: 30 Identify the length of time the asset can be inaccessible/inoperable without significant consequences.

Infrastructure may be inaccessible/inoperable for more than a day, but less than a week after natural hazard without consequences.

Identify the geographic area directly affected by permanent loss or significant inoperability of the infrastructure.

State-wide or greater impacts

Identify the population directly served that would be affected by the permanent loss or significant inoperability of the infrastructure. Greater than 100,000 people

Identify if the infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations.

The infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations. **Will the infrastructure reduce the risk of flooding?**

No

If the infrastructure became inoperable for longer than acceptable in Question 1, how, if at all, would it be expected to impact people's health and safety?

Inoperability of the infrastructure would not be expected to result in injuries

If there are hazardous materials in your infrastructure, what are the extents of impacts related to spills/releases of these materials? There are no hazardous materials in the infrastructure

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the impacts on other facilities, assets, and/or infrastructure?

Minor - Inoperability will not likely affect other facilities, assets, or buildings

If the infrastructure was damaged beyond repair, how much would it approximately cost to replace?

Between \$10 million and \$30 million

Does the infrastructure function as an evacuation route during emergencies? This question only applies to roadway projects. No

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the environmental impacts related to natural resources?

No impact on surrounding natural resources is expected

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the impacts to government services (i.e. the infrastructure is not able to serve or operate its intended users or function)?

Loss of infrastructure is not expected to reduce the ability to maintain government services $$\operatorname{Page}\ 11 \ of\ 12$$

What are the impacts to loss of confidence in government resulting from loss of infrastructure functionality (i.e. the infrastructure asset is not able to serve or operate its intended users or function)? No Impact

Report Comments

N/A

K2 Preferred Route

Climate Resilience Design Standards Tool Project Report

Preferred Route

Date Created: 4/14/2023 3:32:19 PMCreated By: agood9412Date Report Generated: 4/17/2023 10:36:59 AMTool Version: Version 1.2Project Contact Information: Albert Good (agood@epsilonassociates.com)

Project Summary Link to Project Estimated Capital Cost: \$20000000.00 End of Useful Life Year: 2055 Po Rd Project within mapped Environmental Justice Lumbert Mill Rd Taramac Rd neighborhood: No **Ecosystem Service** Scores Preferred Route E Osterville Rd **Benefits** Rd Skunknet F **Project Score** Low Lumbert Mill Rd Exposure Scores Sea Level Rise/Storm 📕 High Falmouth Rd Surge Exposure 28 **Extreme Precipitation -**📕 High Old East Osterville Rd 28 **Urban Flooding** Exposure **Extreme Precipitation -**Moderate 20 **Riverine Flooding** Exposure North Five Corners Lumber Mill Rd Pond **Extreme Heat** 📕 High Exposure West Pond Bumps River Rd

Asset Preliminary Climate I Summary	Risk Rating			Number of Assets: 1
Asset Risk	Sea Level Rise/Storm Surge	Extreme Precipitation - Urban Flooding	Extreme Precipitation - Riverine Flooding	Extreme Heat
Preferred Route	High Risk	High Risk	Moderate Risk	High Risk
Climata Pasilianza Dasian G	tandarda Summany			
Climate Resilience Design S	standards Summary			
	Target Planning Horizon	Intermediate Planning Horizon	Percentile Return Pe	eriod Tier
Sea Level Rise/Storm Surge		-		
Preferred Route	2050		100-yr (1%	6)
Extreme Precipitation				
Preferred Route	2050		25-yr (4%)	Tier 2
Extreme Heat			,	
Preferred Route	2050		90th	Tier 2

Scoring Rationale - Project Exposure Score

The purpose of the Exposure Score output is to provide a preliminary assessment of whether the overall project site and subsequent assets are exposed to impacts of natural hazard events and/or future impacts of climate change. For each climate parameter, the Tool will calculate one of the following exposure ratings: Not Exposed, Low Exposure, Moderate Exposure, or High Exposure. The rationale behind the exposure rating is provided below.

Sea Level Rise/Storm Surge

This project received a "High Exposure" because of the following:

- Exposed to the 1% annual coastal flood event as early as 2030
- Historic coastal flooding at project site
- Located within the 0.1% annual coastal flood event within the project's useful life

Extreme Precipitation - Urban Flooding

This project received a "High Exposure" because of the following:

- Historic flooding at the project site
- Increased impervious area
- Maximum annual daily rainfall exceeds 10 inches within the overall project's useful life
- Existing impervious area of the project site is greater than 50%

Extreme Precipitation - Riverine Flooding

This project received a "Moderate Exposure" because of the following:

- Part of the project is within 100ft of a waterbody
- No historic riverine flooding at project site
- The project is not within a mapped FEMA floodplain [outside of the Massachusetts Coast Flood Risk Model (MC-FRM)]
- Project is not likely susceptible to riverine erosion

Extreme Heat

This project received a "High Exposure" because of the following:

- Increased impervious area
- Existing trees are being removed as part of the proposed project
- Existing impervious area of the project site is greater than 50%
- Located within 100 ft of existing water body
- < 10 day increase in days over 90 deg. F within project's useful life

Scoring Rationale - Asset Preliminary Climate Risk Rating

A Preliminary Climate Risk Rating is determined for each infrastructure and building asset by considering the overall project Exposure Score and responses to Step 4 questions provided by the user in the Tool. Natural Resource assets do not receive a risk rating. The following factors are what influenced the risk ratings for each asset.

Asset - Preferred Route

Primary asset criticality factors influencing risk ratings for this asset:

- · Asset may inaccessible/inoperable for more than a day but less than a week after natural hazard event
- Loss/inoperability of the asset would have state-wide or greater impacts
- The infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations.
- · Inoperability of the asset would not be expected to result in injuries
- Cost to replace is between \$10 million and \$30 million
- There are no hazardous materials in the asset

Project Climate Resilience Design Standards Output

Climate Resilience Design Standards and Guidance are recommended for each asset and climate parameter. The Design Standards for each climate parameter include the following: recommended planning horizon (target and/or intermediate), recommended return period (Sea Level Rise/Storm Surge and Precipitation) or percentile (Heat), and a list of applicable design criteria that are likely to be affected by climate change. Some design criteria have numerical values associated with the recommended return period and planning horizon, while others have tiered methodologies with step-by-step instructions on how to estimate design values given the other recommended design standards.

Asset: Preferred Route

Sea Level Rise/Storm Surge

Target Planning Horizon: 2050 Intermediate Planning Horizon: Not Applicable Return Period: 100-yr (1%)

LIMITATIONS: The recommended Climate Resilience Design Standards for the Sea Level Rise / Storm Surge Design Criteria are based on the user drawn polygon and relationships as defined in the Supporting Documents. The projected values provided through the Tool are based on the Massachusetts Coast Flood Risk Model (MC-FRM) outputs as of 9/13/2021, which included GIS-based data for three planning horizons (2030, 2050, 2070) and six return periods (0.1%, 0.2%, 0.5%, 1%, 2%, 5%). These values are projections based on assumptions as defined in the model and the LiDAR used at the time. For additional information on the MC-FRM, review the additional resources provided on the Start Here page.

The projected values, Standards, and Guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence.

Applicable Design Criteria

Projected Tidal Datums: APPLICABLE

Note: The site is exposed to Sea Level Rise/Storm Surge, but projected Tidal Datums are not available within the site. Additional site-specific analyses are recommended to identify projected Tidal Datums for the recommended planning horizon. Consult a professional coastal engineer or modeler to estimate projected Tidal Datums based on the recommended Standards and additional outputs provided through this Tool.

Projected Water Surface Elevation: APPLICABLE

Accet Name	Recommended Planning Horizon	Pacammandad Paturn Dariad	Max	Min	Area Weighted Average
Asset Name	Recommended Planning Horizon				(ft - NAVD88)
Preferred Route	2050	1% (100-Year)	14.1	13.9	14.1

Projected Wave Action Water Elevation: APPLICABLE

Accet Nome	Recommended Planning Horizon	Personmended Peturn Deried	Max	Min	Area Weighted Average
Asset Name		Recommended Return Period			(ft - NAVD88)
Preferred Route	2050	1% (100-Year)	16.7	13.9	15.8

Projected Wave Heights: APPLICABLE

Asset Name	Recommended Planning Horizon	Percommended Peturn Period	Max	Min	Area Weighted Average
Asset Name	Recommended Flamming Horizon	Recommended Return Period			(Feet)
Preferred Route	2050	1% (100-Year)	3.5	0.0	2.3

Projected Duration of Flooding: APPLICABLE

Methodology to Estimate Projected Values

Projected Design Flood Velocity: APPLICABLE Methodology to Estimate Projected Values

Projected Scour & Erosion: APPLICABLE

Methodology to Estimate Projected Values

Extreme Precipitation

Infrastructure High Risk **LIMITATIONS:** The recommended Standards for Total Precipitation Depth & Peak Intensity are determined by the user drawn polygon and relationships as defined in the Supporting Documents. The projected Total Precipitation Depth values provided through the Tool are based on the climate projections developed by Cornell University as part of EEA's Massachusetts Climate and Hydrologic Risk Project, GIS-based data as of 10/15/21. For additional information on the methodology of these precipitation outputs, see Supporting Documents.

While Total Precipitation Depth & Peak Intensity for 24-hour Design Storms are useful to inform planning and design, it is recommended to also consider additional longer- and shorter-duration precipitation events and intensities in accordance with best practices. Longer-duration, lower-intensity storms allow time for infiltration and reduce the load on infrastructure over the duration of the storm. Shorter-duration, higher-intensity storms often have higher runoff volumes because the water does not have enough time to infiltrate infrastructure systems (e.g., catch basins) and may overflow or back up during such storms, resulting in flooding. In the Northeast, short-duration high intensity rain events are becoming more frequent, and there is often little early warning for these events, making it difficult to plan operationally. While the Tool does not provide recommended design standards for these scenarios, users should still consider both short- and long-duration precipitation events and how they may impact the asset.

The projected values, standards, and guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence

Applicable Design Criteria

Tiered Methodology: Tier 2

Projected Total Precipitation Depth & Peak Intensity for 24-hr Design Storms: APPLICABLE

	•		5	
Ass Nan		Recommended Return Period (Design Storm)	Projected 24-hr Total Precipitation Depth (inches)	Step-by-Step Methodology for Peak Intensity
Prefer Route	^{ed} 2050	25-Year (4%)	7.3	Downloadable Methodology PDF

Projected Riverine Peak Discharge & Peak Flood Elevation: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Methodology to Estimate Projected Valu

Extreme Heat

Target Planning Horizon: 2050 Percentile: 90th Percentile

Applicable Design Criteria

Tiered Methodology: Tier 2

Projected Annual/Summer/Winter Average Temperatures: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Heat Index: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Growing Degree Days: NOT APPLICABLE

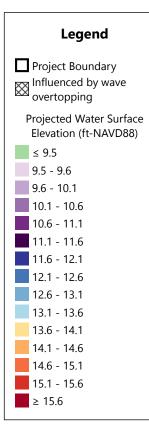
Projected Days Per Year With Max Temp > 95°F, >90°F, <32°F: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Number of Heat Waves Per Year & Average Heat Wave Duration: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Cooling Degree Days & Heating Degree Days (base = 65°F): NOT APPLICABLE

High Risk

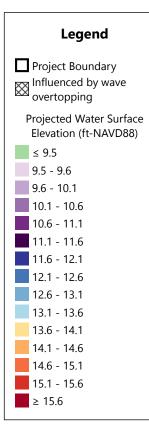
Sea Level Rise/Storm Surge Project Maps

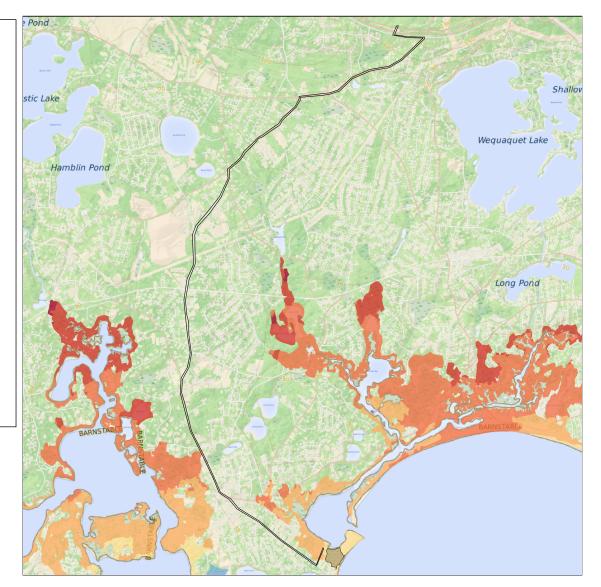

The following three maps illustrate the Projected Water Surface Elevation for the 2030, 2050, and 2070 planning horizons corresponding to the lowest return period (largest design storm) recommended across the assets identified for this project in the Tool. For projects that only have Natural Resource assets, the maps will show the Projected Water Surface Elevations corresponding to the 5% (20-year) return period. Refer to the Climate Resilience Design Standards Output - Sea Level Rise/Storm Surge Section for additional values associated with other assets. The maps include the project area as drawn by the user with a 0.1 mile minimum buffer, but do not reflect the location of specific assets on the site.

LIMITATIONS: The recommended Climate Resilience Design Standards for the Sea Level Rise / Storm Surge Design Criteria are based on the user drawn polygon and relationships as defined in the Supporting Documents. The projected values and maps provided through the Tool are based on the Massachusetts Coast Flood Risk Model (MC-FRM) outputs as of 9/13/2021, which included GIS-based data for three planning horizons (2030, 2050, 2070) and six return periods (0.1%, 0.2%, 0.5%, 1%, 2%, 5%). These values are projections based on assumptions as defined in the model and the LiDAR used at the time. For additional information on the MC-FRM, review the additional resources provided on the Start Here page.

The projected values, maps, Standards, and Guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence.

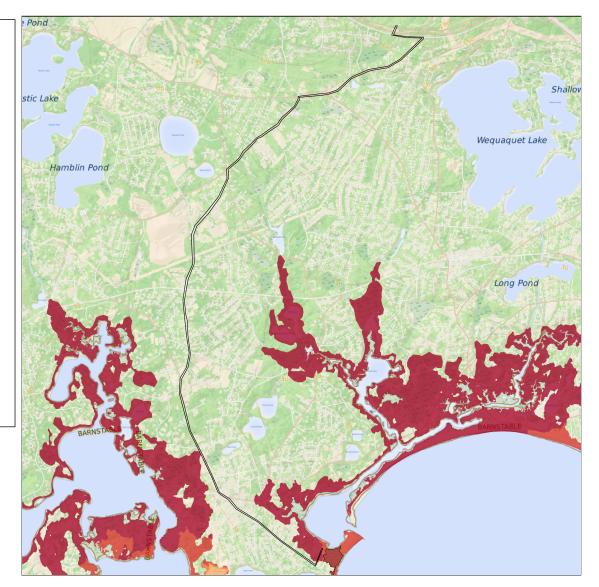
≥ 15.6	14.1 - 14.6 14.6 - 15.1 15.1 - 15.6	12.1 - 12.6 12.6 - 13.1 13.1 - 13.6 13.6 - 14.1	10.6 - 11.1 11.1 - 11.6 11.6 - 12.1	9.6 - 10.1 10.1 - 10.6	Projected Water Surface Elevation (ft-NAVD88) 9.5 - 9.6	Project Boundary Influenced by wave overtopping	Legend
Asset Name	Project Name: Preferred Route Location (Town): Barnstable	Pro	2030				
Planning Horizon Return Period Ma	0.25 0.5 1.0 Miles	Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 1% (100-yr)	2050				
x Min Area Weighted Average (ft-NAVD88)	Created by: agood9412 Date Created: 4/14/2023	; Tool: :riteria !% (100-yr)	2070				


				Tool Version: 1
	Dianning Liouizon	Dotum Douioa	Max Min	Max Min Area Weighted Ave
		Keturn Period		(ft-NAVD88)
	2030	1% (100-yr) 9.5 9.5	9.5 9.5	9.5
Preferred Route	2050	1% (100-yr) 14.1 13.9	14.1 13.9	14.1
	2070	1% (100-yr) 15.6 15.3	15.6 15.3	15.5



Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2030, 1% (100-yr)


Project Name: Preferred Route Location (Town): Barnstable Asset Name		0.05 0.1	0.25 Miles			Created by: agood94 Date Created: 4/14/2 Tool Version: 1.3	
		Planning Horizon	Return Period	Max	Min	Area Weighted Average (ft-NAVD88)	
	Preferred Route	2030	1% (100-yr)	9.5	9.5	9.5	



Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2050, 1% (100-yr)

Project Name: Preferred Route Location (Town): Barnstable Asset Name		0.05 0.1	0.25 Miles			Created by: agood941 Date Created: 4/14/20 Tool Version: 1.3	
		Planning Horizon	Return Period	Max M	lin	Area Weighted Average (ft-NAVD88)	
	Preferred Route	2050	1% (100-yr)	14.1 13	3.9	14.1	

Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2070, 1% (100-yr)

Project Name: Preferred Route Location (Town): Barnstable Asset Name		0.05 0.1	Miles Date Creater Tool Version			
		Planning Horizon	Return Period	Max Mi	n Area Weighted Average (ft-NAVD88)	
	Preferred Route	2070	1% (100-yr)	15.6 15.	3 15.5	

Project Inputs

Core Project Information

Name:

Given the expected useful life of the project, through what year do you estimate the project to last (i.e. before a major reconstruction/renovation)? Location of Project: Estimated Capital Cost: Who is the Submitting Entity?

Is this project being submitted as part of a state grant application? Which grant program?

What stage are you in your project lifecycle?

Is climate resiliency a core objective of this project?

Is this project being submitted as part of the state capital planning process?

Is this project being submitted as part of a regulatory review process or permitting? Brief Project Description: Preferred Route 2055

Barnstable \$200,000,000 Private Other Epsilon Associates Albert Good (agood@epsilonassociates.com) No

Permitting No No Yes

Commonwealth Wind, LLC, proposes to develop an offshore wind energy generation facility in federal waters within the southern portion of BOEM Lease Area OCS-A 0534 along with associated offshore and onshore cabling and a new onshore substation. The proposed offshore export cables will be installed beneath the seafloor via jetplow and will transition to shore via horizontal directional drilling (HDD) at the Dowses Beach Parking Lot. The onshore export cables will be installed entirely underground in a concrete duct bank primarily within existing roadway rights-of-way. The New England Wind 2 Connector is the Massachusetts-jurisdictional elements of the Commonwealth Wind Project and is necessary to deliver the offshore wind power generated by the Commonwealth Wind Project to the ISO-NE electrical grid. The Project will also provide an opportunity for the installation of a municipal sewer system in advance of the current planned schedule which will reduce nitrogen loading from septic systems. In addition to MEPA, the Project will require review by the following state, regional, and local entities: EFSB; DPU; MassDEP; MassDOT; MBUAR; NHESP; MHC; DMF; CCC; OKH Historic District Committee; MVC, and the Towns of Barnstable, Edgartown, Mashpee, and Nantucket Conservation Commissions and Town of Barnstable Town Council, DPW, Planning/Zoning, and Tree Warden. Federal agency reviews and approvals include BOEM, EPA, USACE, NMFS, USCG, FAA, and CZM.

Project Submission Comments:

Project Ecosystem Service Benefits

Factors Influencing Output

- ✓ Project promotes decarbonization
- ✓ Project filters stormwater using green infrastructure
- ✓ Project improves water quality
- ✓ Project improves air quality

Factors to Improve Output

- ✓ Incorporate nature-based solutions that may provide flood protection
- \checkmark Incorporate nature-based solutions that may reduce storm damage

✓ Protect public water supply by reducing the risk of contamination, pollution, and/or runoff of surface and groundwater sources used for human consumption

- ✓ Incorporate green infrastructure or nature-based solutions that recharge groundwater
- \checkmark Incorporate nature-based solutions that sequester carbon carbon
- √ Increase biodiversity, protect critical habitat for species, manage invasive populations, and/or provide connectivity to other habitats
- ✓ Preserve, enhance, and/or restore coastal shellfish habitats
- ✓ Incorporate vegetation that provides pollinator habitat
- ✓ Identify opportunities to remediate existing sources of pollution
- ✓ Provide opportunities for passive and/or active recreation through open space
- ✓ Increase plants, trees, and/or other vegetation to provide oxygen production
- ✓ Identify opportunities to prevent pollutants from impacting ecosystems

Is the primary purpose of this project ecological restoration?

No

Project Benefits	
Provides flood protection through nature-based solutions	No
Reduces storm damage	No
Recharges groundwater	No
Protects public water supply	No
Filters stormwater using green infrastructure	Yes
Improves water quality	Yes
Promotes decarbonization	Yes
Enables carbon sequestration	No
Provides oxygen production	No
Improves air quality	Yes
Prevents pollution	No
Remediates existing sources of pollution	No
Protects fisheries, wildlife, and plant habitat	No
Protects land containing shellfish	No
Provides pollinator habitat	No
Provides recreation	No
Provides cultural resources/education	No
Project Climate Exposure	
Is the primary purpose of this project ecological restoration?	No
Does the project site have a history of coastal flooding?	Yes
Does the project site have a history of flooding during extreme precipitation events	Yes

Does the project site have a history of flooding during extreme precipitation events	Yes
(unrelated to water/sewer damages)?	
Does the project site have a history of riverine flooding?	No
Does the project result in a net increase in impervious area of the site?	Yes
Are existing trees being removed as part of the proposed project?	Yes

Project Assets

Asset: Preferred Route Asset Type: Utility Infrastructure Asset Sub-Type: Energy (electric, gas, petroleum, renewable) Construction Type: New Construction Construction Year: 2025 Useful Life: 30 Identify the length of time the asset can be inaccessible/inoperable without significant consequences. Infrastructure may be inaccessible/inoperable for more than a day, but less than a week after natural hazard without consequences. Identify the geographic area directly affected by permanent loss or significant inoperability of the infrastructure. State-wide or greater impacts

Identify the population directly served that would be affected by the permanent loss or significant inoperability of the infrastructure. Greater than 100,000 people

Identify if the infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations.

The infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations. **Will the infrastructure reduce the risk of flooding?**

No

If the infrastructure became inoperable for longer than acceptable in Question 1, how, if at all, would it be expected to impact people's health and safety?

Inoperability of the infrastructure would not be expected to result in injuries

If there are hazardous materials in your infrastructure, what are the extents of impacts related to spills/releases of these materials? There are no hazardous materials in the infrastructure

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the impacts on other facilities, assets, and/or infrastructure?

Minor - Inoperability will not likely affect other facilities, assets, or buildings

If the infrastructure was damaged beyond repair, how much would it approximately cost to replace?

Between \$10 million and \$30 million

Does the infrastructure function as an evacuation route during emergencies? This question only applies to roadway projects. No

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the environmental impacts related to natural resources?

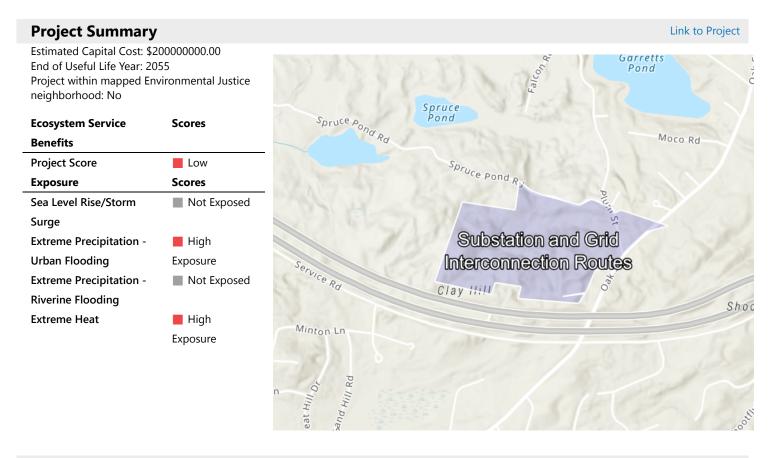
No impact on surrounding natural resources is expected

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the impacts to government services (i.e. the infrastructure is not able to serve or operate its intended users or function)?

Loss of infrastructure is not expected to reduce the ability to maintain government services $$\operatorname{Page}\ 11 \ of\ 12$$

What are the impacts to loss of confidence in government resulting from loss of infrastructure functionality (i.e. the infrastructure asset is not able to serve or operate its intended users or function)? No Impact

Report Comments


N/A

K3 Substation

Climate Resilience Design Standards Tool Project Report

Substation and Grid Interconnection Routes

Date Created: 3/27/2023 12:37:45 PMCreated By: agood9412Date Report Generated: 4/17/2023 11:48:00 AMTool Version: Version 1.2Project Contact Information: Marc Bergeron (mbergeron@epsilonassociates.com)

Asset Preliminary Climate Risk Rating

Number of Assets: 1

Summarv

Asset Risk	Sea Level Rise/Storm Surge	Extreme Precipitation - Urban Flooding	Extreme Precipitation - Riverine Flooding	Extreme Heat
Substation including Equipment, Building and Control Room	Low Risk	High Risk	Low Risk	High Risk

Climate Resilience Design Standards Summary

	Target Planning Horizon	Intermediate Planning Horizon	Percentile	Return Period	Tier
Sea Level Rise/Storm Surge					
Substation including Equipment, Building and					
Control Room					
Extreme Precipitation					
Substation including Equipment, Building and	2050			50-yr (2%)	Tier 3
Control Room					
Extreme Heat					
Substation including Equipment, Building and	2050		90th		Tier 3
Control Room					

Scoring Rationale - Project Exposure Score

The purpose of the Exposure Score output is to provide a preliminary assessment of whether the overall project site and subsequent assets are exposed to impacts of natural hazard events and/or future impacts of climate change. For each climate parameter, the Tool will calculate one of the following exposure ratings: Not Exposed, Low Exposure, Moderate Exposure, or High Exposure. The rationale behind the exposure rating is provided below.

Sea Level Rise/Storm Surge

This project received a "Not Exposed" because of the following:

- Not located within the predicted mean high water shoreline by 2030
- No historic coastal flooding at project site
- Not located within the Massachusetts Coast Flood Risk Model (MC-FRM)

Extreme Precipitation - Urban Flooding

This project received a "High Exposure" because of the following:

- Historic flooding at the project site
- Increased impervious area
- Maximum annual daily rainfall exceeds 10 inches within the overall project's useful life
- Existing impervious area of the project site is less than 10%

Extreme Precipitation - Riverine Flooding

This project received a "Not Exposed" because of the following:

- No historic riverine flooding at project site
- The project is not within a mapped FEMA floodplain [outside of the Massachusetts Coast Flood Risk Model (MC-FRM)]
- Project is more than 500ft from a waterbody
- Project is not likely susceptible to riverine erosion

Extreme Heat

This project received a "High Exposure" because of the following:

- Not located within 100 ft of existing water body
- Increased impervious area
- Existing trees are being removed as part of the proposed project
- Existing impervious area of the project site is less than 10%
- < 10 day increase in days over 90 deg. F within project's useful life

Scoring Rationale - Asset Preliminary Climate Risk Rating

A Preliminary Climate Risk Rating is determined for each infrastructure and building asset by considering the overall project Exposure Score and responses to Step 4 questions provided by the user in the Tool. Natural Resource assets do not receive a risk rating. The following factors are what influenced the risk ratings for each asset.

Asset - Substation including Equipment, Building and Control Room

Primary asset criticality factors influencing risk ratings for this asset:

- Asset must be operable at all times, even during natural hazard event
- · Loss/inoperability of the asset would have state-wide or greater impacts
- The building/facility provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations.
- Some alternative programs and/or services are available to support the community
- Cost to replace is greater than \$100 million
- Spills and/or releases of hazardous materials would be relatively easy to clean up

Project Climate Resilience Design Standards Output

Climate Resilience Design Standards and Guidance are recommended for each asset and climate parameter. The Design Standards for each climate parameter include the following: recommended planning horizon (target and/or intermediate), recommended return period (Sea Level Rise/Storm Surge and Precipitation) or percentile (Heat), and a list of applicable design criteria that are likely to be affected by climate change. Some design criteria have numerical values associated with the recommended return period and planning horizon, while others have tiered methodologies with step-by-step instructions on how to estimate design values given the other recommended design standards.

Asset: Substation including Equipment, Building and Control Room

Sea Level Rise/Storm Surge

Applicable Design Criteria

Projected Tidal Datums: APPLICABLE

Note: The site is exposed to Sea Level Rise/Storm Surge, but projected Tidal Datums are not available within the site. Additional site-specific analyses are recommended to identify projected Tidal Datums for the recommended planning horizon. Consult a professional coastal engineer or modeler to estimate projected Tidal Datums based on the recommended Standards and additional outputs provided through this Tool.

Projected Water Surface Elevation: NOT APPLICABLE

Projected Wave Action Water Elevation: NOT APPLICABLE

Projected Wave Heights: NOT APPLICABLE

Projected Duration of Flooding: NOT APPLICABLE

Projected Design Flood Velocity: NOT APPLICABLE

Projected Scour & Erosion: NOT APPLICABLE

Extreme Precipitation

Target Planning Horizon: 2050 Return Period: 50-yr (2%)

LIMITATIONS: The recommended Standards for Total Precipitation Depth & Peak Intensity are determined by the user drawn polygon and relationships as defined in the Supporting Documents. The projected Total Precipitation Depth values provided through the Tool are based on the climate projections developed by Cornell University as part of EEA's Massachusetts Climate and Hydrologic Risk Project, GIS-based data as of 10/15/21. For additional information on the methodology of these precipitation outputs, see Supporting Documents.

While Total Precipitation Depth & Peak Intensity for 24-hour Design Storms are useful to inform planning and design, it is recommended to also consider additional longer- and shorter-duration precipitation events and intensities in accordance with best practices. Longer-duration, lower-intensity storms allow time for infiltration and reduce the load on infrastructure over the duration of the storm. Shorter-duration, higher-intensity storms often have higher runoff volumes because the water does not have enough time to infiltrate infrastructure systems (e.g., catch basins) and may overflow or back up during such storms, resulting in flooding. In the Northeast, short-duration high intensity rain events are becoming more frequent, and there is often little early warning for these events, making it difficult to plan operationally. While the Tool does not provide recommended design standards for these scenarios, users should still consider both short- and long-duration precipitation events and how they may impact the asset.

The projected values, standards, and guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence

Applicable Design Criteria

Tiered Methodology: Tier 3

Projected Total Precipitation Depth & Peak Intensity for 24-hr Design Storms: APPLICABLE

Asset Name		Recommended Return Period (Design Storm)	Projected 24-hr Total Precipitation Depth (inches)	Step-by-Step Methodology for Peak Intensity	
------------	--	---	--	---	--

High Risk

Building/Facility

	Planning Horizon	Recommended Return Period (Design Storm)	Projected 24-hr Total Precipitation Depth (inches)	Step-by-Step Methodology for Peak Intensity
Substation including Equipment, Building and Control Room	2050	50-Year (2%)	8.2	<u>Downloadable</u> <u>Methodology PDF</u>

High Risk

Projected Riverine Peak Discharge & Peak Flood Elevation: NOT APPLICABLE

Extreme Heat

Target Planning Horizon: 2050 Percentile: 90th Percentile

Applicable Design Criteria

Tiered Methodology: Tier 3

Projected Annual/Summer/Winter Average Temperatures: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 3

Projected Heat Index: APPLICABLE Methodology to Estimate Projected Values : Tier 3

Projected Growing Degree Days: NOT APPLICABLE

Projected Days Per Year With Max Temp > 95°F, >90°F, <32°F: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 3

Projected Number of Heat Waves Per Year & Average Heat Wave Duration: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 3

Projected Cooling Degree Days & Heating Degree Days (base = 65°F): APPLICABLE Methodology to Estimate Projected Values : Tier 3

Project Inputs

Core Project Information

Name:

Given the expected useful life of the project, through what year do you estimate the project to last (i.e. before a major reconstruction/renovation)? Location of Project: Estimated Capital Cost: Who is the Submitting Entity?

Is this project being submitted as part of a state grant application? Which grant program?

What stage are you in your project lifecycle?

Is climate resiliency a core objective of this project?

Is this project being submitted as part of the state capital planning process? Is this project being submitted as part of a regulatory review process or permitting? Brief Project Description: Substation and Grid Interconnection Routes 2055

Barnstable \$200,000,000 Private Other Epsilon Associates, Inc. on behalf of Commonwealth Wind, LLC Marc Bergeron (mbergeron@epsilonassociates.com) No

Permitting

No No

Yes

Commonwealth Wind, LLC, proposes to develop an offshore wind energy generation facility in federal waters within the southern portion of BOEM Lease Area OCS-A 0534 along with associated offshore and onshore cabling and a new onshore substation. The proposed offshore export cables will be installed beneath the seafloor via jetplow and will transition to shore via horizontal directional drilling (HDD) at the Dowses Beach Parking Lot. The onshore export cables will be installed entirely underground in a concrete duct bank primarily within existing roadway rights-of-way. The New England Wind 2 Connector is the Massachusetts-jurisdictional elements of the Commonwealth Wind Project and is necessary to deliver the offshore wind power generated by the Commonwealth Wind Project to the ISO-NE electrical grid. The Project will also provide an opportunity for the installation of a municipal sewer system in advance of the current planned schedule which will reduce nitrogen loading from septic systems. In addition to MEPA, the Project will require review by the following state, regional, and local entities: EFSB; DPU; MassDEP; MassDOT; MBUAR; NHESP; MHC; DMF; CCC; OKH Historic District Committee; MVC, and the Towns of Barnstable, Edgartown, Mashpee, and Nantucket Conservation Commissions and Town of Barnstable Town Council, DPW, Planning/Zoning, and Tree Warden. Federal agency reviews and approvals include BOEM, EPA, USACE, NMFS, USCG, FAA, and CZM,

Project Submission Comments:

Project Ecosystem Service Benefits

Factors Influencing Output

- ✓ Project promotes decarbonization
- ✓ Project filters stormwater using green infrastructure
- ✓ Project improves water quality
- ✓ Project improves air quality

Factors to Improve Output

- ✓ Incorporate nature-based solutions that may provide flood protection
- \checkmark Incorporate nature-based solutions that may reduce storm damage

✓ Protect public water supply by reducing the risk of contamination, pollution, and/or runoff of surface and groundwater sources used for human consumption

- ✓ Incorporate green infrastructure or nature-based solutions that recharge groundwater
- \checkmark Incorporate nature-based solutions that sequester carbon carbon
- ✓ Increase biodiversity, protect critical habitat for species, manage invasive populations, and/or provide connectivity to other habitats
- ✓ Preserve, enhance, and/or restore coastal shellfish habitats
- ✓ Incorporate vegetation that provides pollinator habitat
- \checkmark Identify opportunities to remediate existing sources of pollution
- \checkmark Provide opportunities for passive and/or active recreation through open space
- \checkmark Increase plants, trees, and/or other vegetation to provide oxygen production

- \checkmark Identify opportunities to prevent pollutants from impacting ecosystems
- \checkmark Incorporate education and/or protect cultural resources as part of your project

Is the primary purpose of this project ecological restoration?

N	^
IV	U

No				
Project Benefits				
Provides flood protection through nature-based solutions	No			
Reduces storm damage	No			
Recharges groundwater	No			
Protects public water supply	No			
Filters stormwater using green infrastructure	Yes Yes			
Improves water quality Promotes decarbonization	Yes			
Enables carbon sequestration	No			
Provides oxygen production	No			
Improves air quality	Yes			
Prevents pollution	No			
Remediates existing sources of pollution	No			
Protects fisheries, wildlife, and plant habitat	No			
Protects land containing shellfish	No			
Provides pollinator habitat Provides recreation	No No			
Provides recreation Provides cultural resources/education	No			
Project Climate Exposure				
Is the primary purpose of this project ecological restoration?	No			
Does the project site have a history of coastal flooding?	No			
Does the project site have a history of flooding during extreme precipitation events	Yes			
(unrelated to water/sewer damages)?				
Does the project site have a history of riverine flooding?	No			
Does the project result in a net increase in impervious area of the site?	Yes			
Are existing trees being removed as part of the proposed project?	Yes			
Project Assets				
Asset: Substation including Equipment, Building and Control Room Asset: Substation including Equipment, Building and Control Room Asset Sub-Type: Typically Unoccupied Asset Sub-Type: Generator Construction Type: New Construction Construction Year: 2025 Useful Life: 30 Identify the length of time the asset can be inaccessible/inoperable without significant consequences. Building must be accessible/operable at all times, even during natural hazard event Identify the geographic area directly affected by permanent loss or significant inoperability of the building/facility. State-wide or greater impacts Identify the population directly served that would be affected by the permanent loss of use or inoperability of the building/facility. State-wide or greater impacts Identify if the building/facility provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations. If the building/facility became inoperable for longer than acceptable in Question 1, how, if at all, would it be expected to impact people's health and safety? Inoperability of the building/facility would not be expected to result in injuries If there are hazardous materials in your building/facility, what are the extent of impacts related to spills/releases of these materials? Spills and/or releases of hazardous materials would be relatively easy to clean up If the building/facility became inoperable for longer than acceptable in Question 1, what are the impacts on other facilities, assets, and/or infrastructure? Moderate – Inoperability may impact other facilities, assets, or building, but is not expected to affect their ability to operate If this building/facility was damaged beyond repair, how much would it approximately cost to replace? Greater than or equal to \$100 million				
Is this a recreational facility which can be vacated during a natural hazard event? No If the building/facility became inoperable for longer than acceptable in Question 1, what are the public and/or social services impacts? Some alternative programs and/or services are available to support the community If the building/facility became inoperable for longer than acceptable in Question 1, what are the environmental impacts related to natural resources? No impact on surrounding natural resources is expected				
If the building/facility became inoperable for longer than acceptable in Question 1, what are the impacts to government services (i.e. the building is not able to serve or operate its intended users or function)? Page 6 of 7				

Loss of building is not expected to reduce the ability to maintain government services.

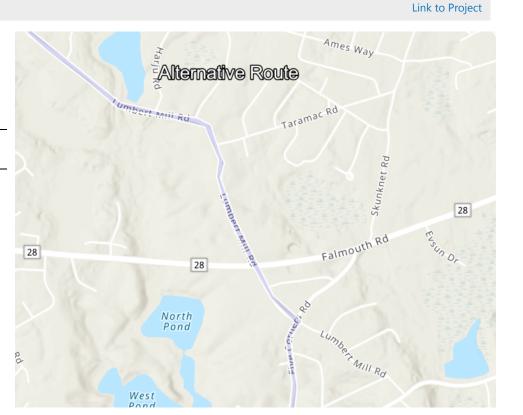
If the building/facility became inoperable for longer than acceptable in Question 1, what are the impacts to loss of confidence in government (i.e. the building is not able to serve or operate its intended users or function)? No Impact

Report Comments

N/A

K4 Alternative Route

Climate Resilience Design Standards Tool Project Report


Alternative Route

Date Created: 4/14/2023 3:08:36 PMCreated By: agood9412Date Report Generated: 4/17/2023 10:36:29 AMTool Version: Version 1.2Project Contact Information: Albert Good (agood@epsilonassociates.com)

Project Summary

Estimated Capital Cost: \$200000000000 End of Useful Life Year: 2055 Project within mapped Environmental Justice neighborhood: No

Ecosystem Service	Scores
Benefits	
Project Score	Low
Exposure	Scores
Sea Level Rise/Storm	📕 High
Surge	Exposure
Extreme Precipitation -	📕 High
Urban Flooding	Exposure
Extreme Precipitation -	📕 High
Riverine Flooding	Exposure
Extreme Heat	📕 High
	Exposure

Asset Preliminary Climate Ris Summary	k Rating				Number of Assets: 1
Asset Risk	Sea Level Rise/Storm Surge High Risk	Extreme Precipitation - Urban Flooding High Risk	Extreme Precipitati Riverine F High	ion -	Extreme Heat High Risk
Climate Resilience Design Sta	Indards Summary				
	Target Planning Horizon	Intermediate Planning Horizon	Percentile	Return Perio	od Tier
Sea Level Rise/Storm Surge		5			
Alternative Route	2050			100-yr (1%)	
Extreme Precipitation					
Alternative Route	2050			25-yr (4%)	Tier 2
Extreme Heat					
Alternative Route	2050		90th		Tier 2

Scoring Rationale - Project Exposure Score

The purpose of the Exposure Score output is to provide a preliminary assessment of whether the overall project site and subsequent assets are exposed to impacts of natural hazard events and/or future impacts of climate change. For each climate parameter, the Tool will calculate one of the following exposure ratings: Not Exposed, Low Exposure, Moderate Exposure, or High Exposure. The rationale behind the exposure rating is provided below.

Sea Level Rise/Storm Surge

This project received a "High Exposure" because of the following:

- Located within the predicted mean high water shoreline by 2030
- Exposed to the 1% annual coastal flood event as early as 2030
- Historic coastal flooding at project site

Extreme Precipitation - Urban Flooding

This project received a "High Exposure" because of the following:

- Historic flooding at the project site
- Increased impervious area
- Maximum annual daily rainfall exceeds 10 inches within the overall project's useful life
- Existing impervious area of the project site is greater than 50%

Extreme Precipitation - Riverine Flooding

This project received a "High Exposure" because of the following:

- Part of the project is within a mapped FEMA floodplain, outside of the Massachusetts Coast Flood Risk Model (MC-FRM)
- Part of the project is within 100ft of a waterbody
- No historic riverine flooding at project site
- Project is not likely susceptible to riverine erosion

Extreme Heat

This project received a "High Exposure" because of the following:

- Increased impervious area
- Existing trees are being removed as part of the proposed project
- Existing impervious area of the project site is greater than 50%
- Located within 100 ft of existing water body
- < 10 day increase in days over 90 deg. F within project's useful life

Scoring Rationale - Asset Preliminary Climate Risk Rating

A Preliminary Climate Risk Rating is determined for each infrastructure and building asset by considering the overall project Exposure Score and responses to Step 4 questions provided by the user in the Tool. Natural Resource assets do not receive a risk rating. The following factors are what influenced the risk ratings for each asset.

Asset - Alternative Route

Primary asset criticality factors influencing risk ratings for this asset:

- · Asset may inaccessible/inoperable for more than a day but less than a week after natural hazard event
- Loss/inoperability of the asset would have state-wide or greater impacts
- The infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations.
- · Inoperability of the asset would not be expected to result in injuries
- Cost to replace is between \$10 million and \$30 million
- There are no hazardous materials in the asset

Project Climate Resilience Design Standards Output

Climate Resilience Design Standards and Guidance are recommended for each asset and climate parameter. The Design Standards for each climate parameter include the following: recommended planning horizon (target and/or intermediate), recommended return period (Sea Level Rise/Storm Surge and Precipitation) or percentile (Heat), and a list of applicable design criteria that are likely to be affected by climate change. Some design criteria have numerical values associated with the recommended return period and planning horizon, while others have tiered methodologies with step-by-step instructions on how to estimate design values given the other recommended design standards.

Asset: Alternative Route

Sea Level Rise/Storm Surge

Target Planning Horizon: 2050 Intermediate Planning Horizon: Not Applicable Return Period: 100-yr (1%)

LIMITATIONS: The recommended Climate Resilience Design Standards for the Sea Level Rise / Storm Surge Design Criteria are based on the user drawn polygon and relationships as defined in the Supporting Documents. The projected values provided through the Tool are based on the Massachusetts Coast Flood Risk Model (MC-FRM) outputs as of 9/13/2021, which included GIS-based data for three planning horizons (2030, 2050, 2070) and six return periods (0.1%, 0.2%, 0.5%, 1%, 2%, 5%). These values are projections based on assumptions as defined in the model and the LiDAR used at the time. For additional information on the MC-FRM, review the additional resources provided on the Start Here page.

The projected values, Standards, and Guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence.

Applicable Design Criteria

Projected Tidal Datums: APPLICABLE

Dianning Horizon	мннw	мнw	MTL	MLW	MLLW		
Planning Horizon	MHHWMHWMTLMLW (ft-NAVD88)						
2050	4.6	4.3	2.6	1.0	0.8		

This project is located in an area with uncertainty for future tidal datums. These uncertain zones are either dynamic in terms of geomorphology or are restricted by manmade features (i.e., culverts, tide gates, etc.) that should be evaluated in more detail at the site-scale.

Projected Water Surface Elevation: APPLICABLE

Asset Name	Recommended Planning Horizon	Recommended Return Period	Max	Min	Area Weighted Average
Asset Nume		Recommended Retain Ferrod			(ft - NAVD88)
Alternative Route	2050	1% (100-Year)	14.9	14.0	14.5

Projected Wave Action Water Elevation: APPLICABLE

Accot Namo	Recommended Planning Horizon	Pacammandad Paturn Dariad	Max	Min	Area Weighted Average
Asset Name	Recommended Planning Horizon	Recommended Return Period			(ft - NAVD88)
Alternative Route	2050	1% (100-Year)	17.6	14.3	15.9

Projected Wave Heights: APPLICABLE

Asset Name	Recommended Planning Horizon	Recommended Return Period	Max	Min	Area Weighted Average
					(Feet)
Alternative Route	2050	1% (100-Year)	4.5	0.0	1.9

Projected Duration of Flooding: APPLICABLE

Methodology to Estimate Projected Values

Projected Design Flood Velocity: APPLICABLE Methodology to Estimate Projected Values

Projected Scour & Erosion: APPLICABLE Methodology to Estimate Projected Values

High Risk

Infrastructure

High Risk

Target Planning Horizon: 2050 Return Period: 25-yr (4%)

LIMITATIONS: The recommended Standards for Total Precipitation Depth & Peak Intensity are determined by the user drawn polygon and relationships as defined in the Supporting Documents. The projected Total Precipitation Depth values provided through the Tool are based on the climate projections developed by Cornell University as part of EEA's Massachusetts Climate and Hydrologic Risk Project, GIS-based data as of 10/15/21. For additional information on the methodology of these precipitation outputs, see Supporting Documents.

While Total Precipitation Depth & Peak Intensity for 24-hour Design Storms are useful to inform planning and design, it is recommended to also consider additional longer- and shorter-duration precipitation events and intensities in accordance with best practices. Longer-duration, lower-intensity storms allow time for infiltration and reduce the load on infrastructure over the duration of the storm. Shorter-duration, higher-intensity storms often have higher runoff volumes because the water does not have enough time to infiltrate infrastructure systems (e.g., catch basins) and may overflow or back up during such storms, resulting in flooding. In the Northeast, short-duration high intensity rain events are becoming more frequent, and there is often little early warning for these events, making it difficult to plan operationally. While the Tool does not provide recommended design standards for these scenarios, users should still consider both short- and long-duration precipitation events and how they may impact the asset.

The projected values, standards, and guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence

Applicable Design Criteria

Tiered Methodology: Tier 2

Projected Total Precipitation Depth & Peak Intensity for 24-hr Design Storms: APPLICABLE

		,	5	
Asset Name	Recommended Planning Horizon	Recommended Return Period (Design Storm)	Projected 24-hr Total Precipitation Depth (inches)	Step-by-Step Methodology for Peak Intensity
Alternative Route	2050	25-Year (4%)	7.3	Downloadable Methodology PDF

Projected Riverine Peak Discharge & Peak Flood Elevation: APPLICABLE

Methodology to Estimate Projected Values : Tier 2

Extreme Heat

Target Planning Horizon: 2050 Percentile: 90th Percentile

Applicable Design Criteria

Tiered Methodology: Tier 2

Projected Annual/Summer/Winter Average Temperatures: APPLICABLE Methodology to Estimate Projected Values : Tier 2

Projected Heat Index: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Growing Degree Days: NOT APPLICABLE

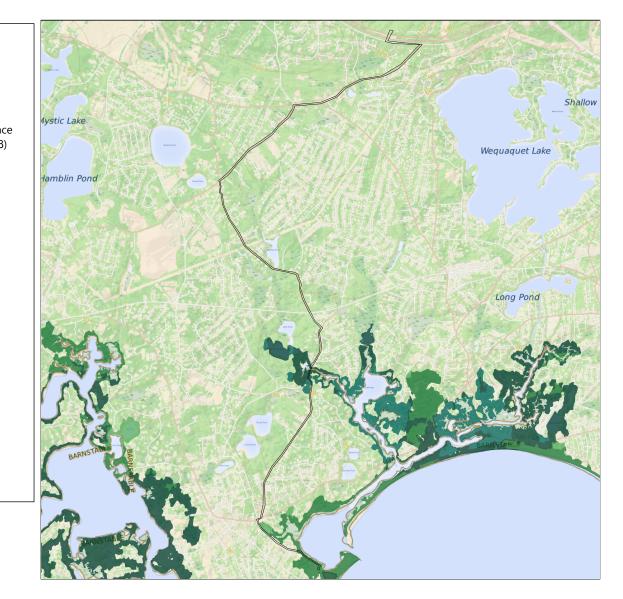
Projected Days Per Year With Max Temp > 95°F, >90°F, <32°F: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Number of Heat Waves Per Year & Average Heat Wave Duration: APPLICABLE <u>Methodology to Estimate Projected Values</u> : Tier 2

Projected Cooling Degree Days & Heating Degree Days (base = 65°F): NOT APPLICABLE

Sea Level Rise/Storm Surge Project Maps

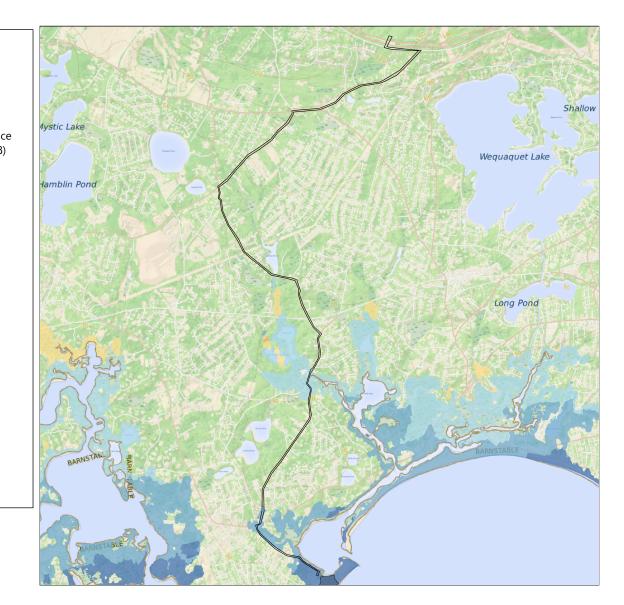
The following three maps illustrate the Projected Water Surface Elevation for the 2030, 2050, and 2070 planning horizons corresponding to the lowest return period (largest design storm) recommended across the assets identified for this project in the Tool. For projects that only have Natural Resource assets, the maps will show the Projected Water Surface Elevations corresponding to the 5% (20-year) return period. Refer to the Climate Resilience Design Standards Output - Sea Level Rise/Storm Surge Section for additional values associated with other assets. The maps include the project area as drawn by the user with a 0.1 mile minimum buffer, but do not reflect the location of specific assets on the site.


LIMITATIONS: The recommended Climate Resilience Design Standards for the Sea Level Rise / Storm Surge Design Criteria are based on the user drawn polygon and relationships as defined in the Supporting Documents. The projected values and maps provided through the Tool are based on the Massachusetts Coast Flood Risk Model (MC-FRM) outputs as of 9/13/2021, which included GIS-based data for three planning horizons (2030, 2050, 2070) and six return periods (0.1%, 0.2%, 0.5%, 1%, 2%, 5%). These values are projections based on assumptions as defined in the model and the LiDAR used at the time. For additional information on the MC-FRM, review the additional resources provided on the Start Here page.

The projected values, maps, Standards, and Guidance provided within this Tool may be used to inform plans and designs, but they do not provide guarantees for future conditions or resilience. The projected values are not to be considered final or appropriate for construction documents without supporting engineering analyses. The guidance provided within this Tool is intended to be general and users are encouraged to do their own due diligence.

11.8 - 12.3 12.3 - 12.8 13.3 - 13.3 13.8 - 14.3 14.3 - 14.8 14.8 - 15.3 15.8 - 16.3 15.8 - 16.3 16.8 - 17.3 ≥ 17.3	Legend Project Boundary Influenced by wave overtopping Projected Water Surface Elevation (ft-NAVD88) ≤ 8.8 9.3 - 9.8 9.3 - 9.8 9.3 - 10.3 10.8 - 11.3 11.3 - 11.8
Project Name: Alternative Route Location (Town): Barnstable Alternative Route	
Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 1% (100-yr) 0.25 1.0 0.25 0.5 1.0 Created 0.25 0.5 1.0 Date Created 0.25 1.0 Max Min Area Weight Max Min Area Weight ne 2030 1% (100-yr) 9.9 8.8 9.9 oute 2050 1% (100-yr) 14.9 14.0 14 2070 1% (100-yr) 17.3 15.3 16	
dards Tool: ign Criteria lap: 1% (100-yr) Created by: agood9412 Date Created: 4/14/2023 Tool Version: 1.3 KMin Area Weighted Average (ft-NAVD88) 8.8 9.4 14.0 14.5 15.3 16.0	

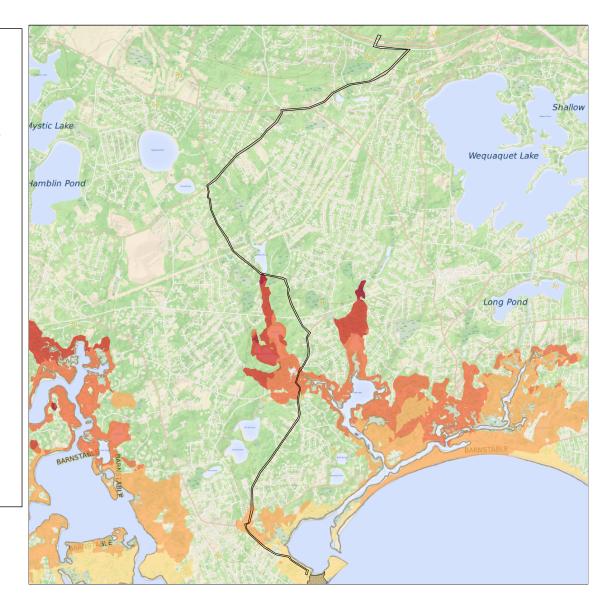
Share Share


Legend
Project Boundary Influenced by wave overtopping
Projected Water Surface Elevation (ft-NAVD88)
≤ 8.8
8.8 - 9.3
9.3 - 9.8
9.8 - 10.3
10.3 - 10.8
10.8 - 11.3
11.3 - 11.8
11.8 - 12.3
12.3 - 12.8
12.8 - 13.3
13.3 - 13.8
13.8 - 14.3
14.3 - 14.8
14.8 - 15.3
15.3 - 15.8
15.8 - 16.3
16.3 - 16.8
16.8 - 17.3
≥ 17.3

Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2030, 1% (100-yr)

Project Name: Alternative l Location (Town): Barnstable		0.05 0.1	0.25 Miles			Created by: agood9412 Date Created: 4/14/2023 Tool Version: 1.3
Asset Name		Planning Horizon	Return Period	Max	Min	Area Weighted Average (ft-NAVD88)
		2030	1% (100-yr)	9.9	8.8	9.4

	Legend
	Project Boundary Influenced by wave overtopping
ł	Projected Water Surfac Elevation (ft-NAVD88)
	≤ 8.8
	8.8 - 9.3
	9.3 - 9.8
	9.8 - 10.3
	10.3 - 10.8
	10.8 - 11.3
	11.3 - 11.8
	11.8 - 12.3
	12.3 - 12.8
	12.8 - 13.3
	13.3 - 13.8
	13.8 - 14.3
	14.3 - 14.8
	14.8 - 15.3
	15.3 - 15.8
	15.8 - 16.3
	16.3 - 16.8
	16.8 - 17.3
	≥ 17.3



// N

Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2050, 1% (100-yr)

Project Name: Alternative Route Location (Town): Barnstable		0.05 0.1	0.25 Miles		Created by: agood9412 Date Created: 4/14/202 Tool Version: 1.3	
Asset Name		Planning Horizon	Return Period	Max Min	Area Weighted Average (ft-NAVD88)	
	Alternative Route	2050	1% (100-vr)	149 140	14.5	

Legend
Project Boundary Influenced by wave overtopping
Projected Water Surface Elevation (ft-NAVD88)
≤ 8.8
8.8 - 9.3
9.3 - 9.8
9.8 - 10.3
10.3 - 10.8
10.8 - 11.3
11.3 - 11.8
11.8 - 12.3
12.3 - 12.8
12.8 - 13.3
13.3 - 13.8
13.8 - 14.3
14.3 - 14.8
14.8 - 15.3
15.3 - 15.8
15.8 - 16.3
16.3 - 16.8
16.8 - 17.3
≥ 17.3

// N

Climate Resilience Design Standards Tool: Sea Level Rise/Storm Surge Design Criteria Projected Water Surface Elevation Map: 2070, 1% (100-yr)

Project Name: Alternative Route Location (Town): Barnstable		0.05 0.1	0.25 Miles		Created by: agood9412 Date Created: 4/14/202 Tool Version: 1.3
	Asset Name	Planning Horizon	Return Period	Max Mi	n Area Weighted Average (ft-NAVD88)
	Alternative Route	2070	1% (100-vr)	17.3 15.	3 16.0

Project Inputs

Core Project Information

Name:

Given the expected useful life of the project, through what year do you estimate the project to last (i.e. before a major reconstruction/renovation)? Location of Project: Estimated Capital Cost: Who is the Submitting Entity?

Is this project being submitted as part of a state grant application? Which grant program?

What stage are you in your project lifecycle?

Is climate resiliency a core objective of this project?

Is this project being submitted as part of the state capital planning process?

Is this project being submitted as part of a regulatory review process or permitting? Brief Project Description:

Alternative Route 2055

Barnstable \$200,000,000 Private Other Epsilon Associates Albert Good (agood@epsilonassociates.com) No

Permitting No Yes

Commonwealth Wind, LLC, proposes to develop an offshore wind energy generation facility in federal waters within the southern portion of BOEM Lease Area OCS-A 0534 along with associated offshore and onshore cabling and a new onshore substation. The proposed offshore export cables will be installed beneath the seafloor via jetplow and will transition to shore via horizontal directional drilling (HDD) at the Dowses Beach Parking Lot. The onshore export cables will be installed entirely underground in a concrete duct bank primarily within existing roadway rights-of-way. The New England Wind 2 Connector is the Massachusetts-jurisdictional elements of the Commonwealth Wind Project and is necessary to deliver the offshore wind power generated by the Commonwealth Wind Project to the ISO-NE electrical grid. The Project will also provide an opportunity for the installation of a municipal sewer system in advance of the current planned schedule which will reduce nitrogen loading from septic systems. In addition to MEPA, the Project will require review by the following state, regional, and local entities: EFSB; DPU; MassDEP; MassDOT; MBUAR; NHESP; MHC; DMF; CCC; OKH Historic District Committee; MVC, and the Towns of Barnstable, Edgartown, Mashpee, and Nantucket Conservation Commissions and Town of Barnstable Town Council, DPW, Planning/Zoning, and Tree Warden. Federal agency reviews and approvals include BOEM, EPA, USACE, NMFS, USCG, FAA, and CZM.

Project Submission Comments:

Project Ecosystem Service Benefits

Factors Influencing Output

- ✓ Project promotes decarbonization
- ✓ Project filters stormwater using green infrastructure
- ✓ Project improves water quality
- ✓ Project improves air quality

Factors to Improve Output

- ✓ Incorporate nature-based solutions that may provide flood protection
- ✓ Incorporate nature-based solutions that may reduce storm damage

✓ Protect public water supply by reducing the risk of contamination, pollution, and/or runoff of surface and groundwater sources used for human consumption

- ✓ Incorporate green infrastructure or nature-based solutions that recharge groundwater
- \checkmark Incorporate nature-based solutions that sequester carbon carbon
- √ Increase biodiversity, protect critical habitat for species, manage invasive populations, and/or provide connectivity to other habitats
- ✓ Preserve, enhance, and/or restore coastal shellfish habitats
- ✓ Incorporate vegetation that provides pollinator habitat
- ✓ Identify opportunities to remediate existing sources of pollution
- ✓ Provide opportunities for passive and/or active recreation through open space
- ✓ Increase plants, trees, and/or other vegetation to provide oxygen production
- ✓ Identify opportunities to prevent pollutants from impacting ecosystems

Is the primary purpose of this project ecological restoration?

No

Project Benefits	
Provides flood protection through nature-based solutions	No
Reduces storm damage	No
Recharges groundwater	No
Protects public water supply	No
Filters stormwater using green infrastructure	Yes
Improves water quality	Yes
Promotes decarbonization	Yes
Enables carbon sequestration	No
Provides oxygen production	No
Improves air quality	Yes
Prevents pollution	No
Remediates existing sources of pollution	No
Protects fisheries, wildlife, and plant habitat	No
Protects land containing shellfish	No
Provides pollinator habitat	No
Provides recreation	No
Provides cultural resources/education	No
Project Climate Exposure	
Is the primary purpose of this project ecological restoration?	No
Does the project site have a history of coastal flooding?	Yes
Does the project site have a history of flooding during extreme precipitation events	Yes

Does the project site have a history of flooding during extreme precipitation events	Yes
(unrelated to water/sewer damages)?	
Does the project site have a history of riverine flooding?	No
Does the project result in a net increase in impervious area of the site?	Yes
Are existing trees being removed as part of the proposed project?	Yes

Project Assets

Asset: Alternative Route Asset Type: Utility Infrastructure Asset Sub-Type: Energy (electric, gas, petroleum, renewable) Construction Type: New Construction Construction Year: 2025 Useful Life: 30 Identify the length of time the asset can be inaccessible/inoperable without significant consequences. Infrastructure may be inaccessible/inoperable for more than a day, but less than a week after natural hazard without consequences. Identify the geographic area directly affected by permanent loss or significant inoperability of the infrastructure. State-wide or greater impacts

Identify the population directly served that would be affected by the permanent loss or significant inoperability of the infrastructure. Greater than 100,000 people

Identify if the infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations.

The infrastructure provides services to populations that reside within Environmental Justice neighborhoods or climate vulnerable populations. **Will the infrastructure reduce the risk of flooding?**

No

If the infrastructure became inoperable for longer than acceptable in Question 1, how, if at all, would it be expected to impact people's health and safety?

Inoperability of the infrastructure would not be expected to result in injuries

If there are hazardous materials in your infrastructure, what are the extents of impacts related to spills/releases of these materials? There are no hazardous materials in the infrastructure

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the impacts on other facilities, assets, and/or infrastructure?

Minor - Inoperability will not likely affect other facilities, assets, or buildings

If the infrastructure was damaged beyond repair, how much would it approximately cost to replace?

Between \$10 million and \$30 million

Does the infrastructure function as an evacuation route during emergencies? This question only applies to roadway projects. No

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the environmental impacts related to natural resources?

No impact on surrounding natural resources is expected

If the infrastructure became inoperable for longer than acceptable in Question 1, what are the impacts to government services (i.e. the infrastructure is not able to serve or operate its intended users or function)?

Loss of infrastructure is not expected to reduce the ability to maintain government services $$\operatorname{Page}\ 11 \ of\ 12$$

What are the impacts to loss of confidence in government resulting from loss of infrastructure functionality (i.e. the infrastructure asset is not able to serve or operate its intended users or function)? No Impact

Report Comments

N/A