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To: Kenneth Fitzgerald, P.E. From: Donald Moore, P.G. 

 Stantec   Stantec – Auburn, NH 

File: 198804104 Date: March 27, 2023 

Cc:  

Reference: Avangrid Renewables – Commonwealth Wind Project / Analysis of Potential HDD 
Impacts to Aquifer at Dowses Beach, Barnstable, MA 

  

Avangrid Renewables requested Stantec evaluate whether the proposed horizontal directional 
drill (HDD) installation required for the landfall of the Commonwealth Wind Project subsea 
cables would impact the aquifer at the proposed landing site at Dowses Beach in the Osterville 
village section of Barnstable, MA.  To evaluate this issue, Stantec conducted a desk top review 
of State and Local resources, including surficial geologic maps, Town zoning maps and 
ordinances, as well as the draft geotechnical reports  in the vicinity of the installation.  

In terms of the designation of aquifer, it is important to note that the entire land mass of Cape 
Code is designated as the Cape Cod Aquifer.  It has been determined by the US EPA that the 
Cape Cod aquifer is the sole or principal source of drinking water for Cape Cod.  The 
boundaries of this aquifer are Cape Cod Canal, Cape Cod Bay, the Atlantic Ocean, Nantucket 
Sound, and Buzzards Bay.  Therefore, Dowses Beach is a part of the Cape Cod Aquifer. 

It is also important to note that the term aquifer has various definitions.  A simple definition is that 
an aquifer is a saturated geologic formation capable of transmitting water.  The geologic 
sediments of the Cape are comprised primarily of sands and gravels that were deposited from 
glacial melt water and are described as Glacial Stratified Deposits.  The thickness of these 
deposits have been determined to range from 200 to over 600 feet in the interior areas of the 
Cape.  The aquifer is 100% recharged from infiltration of rainwater and snow melt.  The 
sediments at Dowses Beach are shown on the attached Geologic Map of the Hyannis 
Quadrangle as Beach Deposits.  These deposits are described as wave-eroded glacial deposits 
that are sorted, transported, and redeposited to form spits and beaches.  This depositional 
environment or activity occurred after glacial retreat (i.e., Post-Glacial).  

A more comprehensive definition is that an aquifer is a subsurface geologic formation that 
contains sufficient saturated permeable material that can yield significant quantities and 
qualities of water to wells and springs.  Throughout the Cape there are areas where the Glacial 
Stratified Deposits contain more gravel sized particles and are more transmissive.  These areas 
have typically been developed as public water supply wells and/or well fields.   

Important characteristics in determining the yield of an aquifer are hydraulic conductivity, 
saturated thickness, and transmissivity.  Hydraulic conductivity is a measure of the capacity of a 
porous medium to transmit water.  In general, hydraulic conductivity values range from about 
one to a few hundred feet per day (ft/day) for fine to course sands and from about 1,000 to 
over 100,000 ft/day for gravels.  Saturated thickness is the vertical thickness of the aquifer, 
typically the distance from the water table to the bottom of the aquifer (usually on bedrock or 
a confining layer such as till.)  Transmissivity, which is a function of hydraulic conductivity and 
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saturated thickness, is a description of the capability of the entire thickness of the aquifer to 
transmit water.  

To further this analysis of aquifer, the attached Zoning Map of the Osterville section of 
Barnstable shows that Dowses Beach is designated as Aquifer Protection Overlay District (AP), 
with a note that AP is all other areas not identified as Wellhead or Groundwater Protection 
Overlay Districts.  The underlying zoning district is show as RF-1 (single family residential).  This AP 
zoning is consistent with the description of the Cape Cod Aquifer above. 

The zoning map also shows that there are three existing public water supply wells located 
approximately 1.5 miles to the northwest.  These wells, designated as C-O AR #3,4, C-O MC #2, 
and C-O #10, fall within the Wellhead Protection Overlay District (WP).  WP is based on a five-
year time of travel to existing, proven future and potential future public supply wells.   

Surrounding the WP is the Groundwater Protection Overlay District (GP).  The GP is based on 
Zone II delineations to existing, proven future and potential future public supply wells.  A Zone II 
is defined as "That area of an aquifer which contributes water to a well under the most severe 
pumping and recharge conditions that can be realistically anticipated (i.e., 180 days of 
pumping at safe yield, with no recharge from precipitation).  It is bounded by the groundwater 
divides which result from pumping the well and by the contact of the aquifer with less 
permeable materials such as till or bedrock.  In some cases, streams or lakes may act as 
recharge boundaries.  In all cases, Zone IIs shall extend up gradient to its point of intersection 
with prevailing hydrogeologic boundaries (a groundwater flow divide, a contact with till or 
bedrock, or a recharge boundary).”  Zone IIs have been determined by hydrogeologic 
modeling and approved by the Massachusetts Department of Environmental Protection’s (DEP 
Drinking Water Program (DWP). 

The zoning map shows the area of aquifer contributing water to this well field extends primarily 
to the northwest.  It shows that Dowses Beach is not within the Zone II or GP.  In other words, any 
fresh water located underneath Dowses Beach is not supplying the public wells or the aquifer 
surrounding and contributing water to the wells. 

An analysis of the data presented in the draft geotechnical reports  further shows that the 
sediments underlying Dowses Beach are not comprised of a “sufficient saturated permeable 
material that can yield significant quantities and qualities of water to wells and springs.”  Three 
soil borings were advanced at the Dowses beach location.  These include B-OTC1-01, B-JOINT-
01, and B-JOINT-02.  The boring logs show the subsurface materials are primarily comprised of 
fine to medium sands.  Thin layers of fine to coarse gravels were encountered at B-JOINT-01 
(from 7 to 8 feet below ground) and at B-JOINT-02 (from 9.5 to 14.5 and 17.0 to 19.5 feet below 
ground).   

The sieve analyses/gradation curves presented in the reports and utilized for geotechnical 
purposes can also be used to estimate the hydraulic conductivities of the sediments 
encountered.   

The relationship between conductivity and grain size requires the choice of a representative 
grain-size diameter (Freeze and Cherry, 1979).  A simple, and apparently durable, empirical 
relation is described by the formula: 

 

https://www.mass.gov/orgs/massachusetts-department-of-environmental-protection
https://www.mass.gov/drinking-water-program
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K = A(d10)2 
 
where: 

K: Hydraulic conductivity in cm/s. 
d10: The grain-size diameter, in mm, at which 10% by weight of the soil particles are 

finer and 90% are coarser. The d10 value is taken directly from the gradation curves. 
A: A constant; for K in cm/s and d10 in mm, the coefficient A is equal to 1.0. 

 
As shown in the attached Table 1, the d10 fraction was able to be calculated directly from the 
majority of gradation curves.  A few of the curves were extrapolated as shown to determine the 
d10 fraction. 

The calculated hydraulic conductivities, based on grain-size distribution, are also listed in Table 
1.  This method calculated conductivities in the sandy sediments from 12 ft/day to 93 ft/day.  
The calculated conductivity of the gravel sediments encountered in B-Joint-02 was 359 ft/day.  
These relatively low conductivity values further support the conclusion that the sediments 
underlying Dowses Beach are not comprised of a “sufficient saturated permeable material that 
can yield significant quantities and qualities of water to wells and springs.” 

In conclusion, the analysis undertaken of the available data indicates that although the 
sediments underlying Dowses Beach are part of the Cape Cod Aquifer, they are not a 
contributing part of the aquifer to nearby public water supply wells.  Therefore, the proposed 
HDD work will not negatively impact the nearby wells or the aquifer contributing water to those 
wells. 

Construction of each HDD will entail drilling a series of progressively larger diameter bores to 
allow a nominal 32-inch High Density Polyethylene (HDPE) casing to be pulled through the 
alignment.  The HDPE casings serve as conduit for landing the subsea cables.  A drilling fluid, 
comprised of a bentonite (non-toxic clay) and water viscous slurry, will cool the drill bit, support 
the walls of the bore, and transport cuttings out of the bore and into a drilling pit located 
adjacent to the drill rig in the Dowses Beach Parking lot.  The cuttings are removed, and the 
drilling fluid is recirculated.  Earthen berms will be installed around the construction work to 
contain fluids aboveground.  The viscous nature of the fluid inhibits it from migrating from the 
bore and from the drilling pit into the surrounding sediments. After the HDD is completed, the 
drilling fluids are pumped from the pit and properly disposed off-Site. 

I hope this meets your needs.   Please call me at 603-498-3244 if you have any questions. 

Sincerely, 

STANTEC CONSULTING SERVICES INC. 

 
Donald F. Moore, P.G. 
Project Manager 
 
Donald.moore2@stantec.com 

mailto:Donald.moore2@stantec.com


TABLE 1
Sieve Sample/Conductivity Results

Dowses Beach Borings

Hydraulic Conductivity (K)

Location Type of Test Material Sample Depth % Gravel % Sand % Silt & Clay d10
1 (cm/sec)2 (ft/day)

(ft BLS)
Shallow Overburden
B-OTC-01 Sieve Analysis F - C SAND 5.0 - 7.0 0.7 97.0 2.3 0.1451 2.1E-02 59.7

B-OTC-01 Sieve Analysis F - M SAND & SILT 11.0 - 13.0 0.0 58.6 41.4 0.0123 1.5E-04 0.4

B-OTC-01 Sieve Analysis F - M SAND 16.5 - 17.5 0.0 93.6 6.4 0.0887 7.9E-03 22.3

B-OTC-01 Sieve Analysis SANDY SILT 20.5 - 21 0.0 11.8 88.2 0.0088 7.7E-05 0.2

B-OTC-01 Sieve Analysis F - M SAND 24.5 - 25 0.1 96.8 3.1 0.1245 1.6E-02 43.9

B-OTC-01 Sieve Analysis SILT 40 - 42 0.2 25.6 74.2 0.0060 3.6E-05 0.1

B-OTC-01 Sieve Analysis SILT 65 - 67 0.0 29.8 70.2 0.0056 3.1E-05 0.1

B-JOINT-01 Sieve Analysis F - C SAND 12.5 - 13.5 21.8 73.3 4.9 0.1577 2.5E-02 70.5

B-JOINT-01 Sieve Analysis F - C SAND 16.5 - 17.0 20.1 72.4 7.5 0.1633 2.7E-02 75.6

B-JOINT-01 Sieve Analysis F SAND & SILT 24.5 - 25 0.0 56.7 43.3 0.0213 4.5E-04 1.3

B-JOINT-01 Sieve Analysis F SAND 35 - 37 0.3 84.0 15.7 0.0650 4.2E-03 12.0

B-JOINT-01 Sieve Analysis SILT 50 - 52 0.0 6.5 93.5 0.0069 4.8E-05 0.1

B-JOINT-01 Sieve Analysis F - M SAND & SILT 53.5 - 54 0.0 50.7 49.3 0.0110 1.2E-04 0.3

B-JOINT-01 Sieve Analysis F - M SAND 65 - 67 0.4 73.2 26.4 0.0320 1.0E-03 2.9
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TABLE 1
Sieve Sample/Conductivity Results

Dowses Beach Borings

Hydraulic Conductivity (K)

Location Type of Test Material Sample Depth % Gravel % Sand % Silt & Clay d10
1 (cm/sec)2 (ft/day)

(ft BLS)
B-JOINT-02 Sieve Analysis F - M GRAVEL 8.5 - 9.0 0.0 98.8 1.2 0.1815 3.3E-02 93.4

B-JOINT-02 Sieve Analysis F - C SAND & GRAVEL 13.5 - 14.0 61.4 36.0 2.6 0.3560 1.3E-01 359.3

B-JOINT-02 Sieve Analysis F SAND & SILT 23.5 - 24.0 0.0 67.0 33.0 0.0340 1.2E-03 3.3

B-JOINT-02 Sieve Analysis F - M SAND 28.5 - 29.0 0.0 99.0 1.0 0.1280 1.6E-02 46.4

AVERAGE SHALLOW OVERBURDEN 1.6.E-02 44.0

1 = d10 values in bold derived by extrapolating the gradation curve.  High percentage of fines prevents calculation of D10 with this method.  

2 = K = A(d10)
2 : (Freeze and Cherry, 1979)

A = 1

Sieve_Permeability Table.xls Page 2 of 2



DEPARTMENT OF THE INTERIOR 
UNITED STATES GEOLOGICAL SURVEY 

INTRODUCTION 
The Hyannis quadrangle (fig. 1) is underlain by gla­

cial sediments deposited by the last ice sheet to cover 
southern New England. Deposits associated with the 
Holocene rise in sea level make up most of the remain­
ing sediments. 

N 

1 
H IGH HEAD 

Cape Cod Bay 

BREWSTER BOREHOLE 

BOREHOLE °''"" J 
Nanrncket Sound 

Z,c~, Cliff , 
Q 

FIGURE 1.- Index map of southeastern Massachusetts 
showing location of the Hyannis quadrangle and local­
ities and features mentioned in the report. 

Subsurface geology is inferred from seismic data 
(table 1), composition of the drift, and ·boreholes. The 
bedrock surface is more than 100 feet below sea level 
throughout the quadrangle. At Kalmus Park (table 1, 
site B), bedrock is 525 feet deep, suggesting a bedrock 
valley. Bedrock lithologies are not known. At Sandy 
Neck (table 1, site Al , however, the 18,000-feet-per­
second compressive-wave velocity suggests that bedrock 
there is probably granitic rock. Trace amounts of glau­
conite and feldspar in the glacial sands may be derived 
from preglacial coastal plain sediments of Cretaceous to 
Pleistocene age, remnants of which may lie beneath the 
drift. 

TABLE 1 ---SeUlmic data 
Layer 1 Layer 2 Bedrock 

Thick- Veloc- Thick-
ness nee, ity Velocity Velocity 

Site Locality (feet) (ft/ sec) (feet) (ft/ sec) (ft/sec) 
A Sandy Neck 310 5,ooo· - - 18,000 
B Kalmus Park 180 5,600* 345 7,650 .. 21,600*** 
C Craigville 362 5,600* - - 14,lOO••• 

Beach 

•Interpreted as saturated unconsolidated sediment. 
Mostly sand with some gravel in the upper part. Possi­
bly silt and clay in the lower part. 

.. Interpreted as compact basal till. 
•••velocity unreliable; line was not reversed. 

PLEISTOCENE DEPOSITS 
The oldest unconsolidated deposit is represented by 

layer 2 ( table 1), thought to be mostly till (Qt ) deposited 
by the last ice. Sound velocity in this layer is similar to 
velocities measured on subglacial tills elsewhere in 
Massachusetts (Oldale and Tuttle, 1965). Layer 2 may 
also include earlier Pleistocene drifts and possibly pre­
glacial Coastal Plain deposits. 

The upper part of layer 1 (table 1 l is composed of 
sandy sediments that make up the surficial deposits. At 
depth the layer may be clayey silt similar to that en­
countered in deep boreholes ( Koteff and Cot ton, 1962, 
table 3; Maevsky and Drake, 1963). 

KAME DEPOSITS 
Near the south shore are isolated deposits with sur­

faces 10 to 50 feet above t he surface of the adjacent 
outwash deposits. They have ice-contact slopes most 
likely formed before the deposition of the outwash plain. 
The altitude, the limited areal extent, and the till and 
large boulders within the deposits indicate that these 
are kames, possibly formed when the stagnant ice front 
was slightly south of these features. 

BARNSTABLE OUTWASH-PLAIN DEPOSITS 
The pattern of restored contours on the precollapse 

surface of the Barnstable outwash plain, south of the 
Sandwich moraine, has the form of the surface of a 
large outwash fan. The fan apex with an altitude of 
about 90 feet is located just north of Shallow Pond. 
From there the Barnstable outwash plain slopes gently 
south toward Nantucket Sound. Many kettle holes and 
valleys interrupt the graded surface. 

MASHPEE PITTED-PLAIN DEPOSIT 
The Mashpee pitted plain, named by Mather and 

others (1942, p. 1151 ) , is a similar large outwash fan 
with an altitude at its apex of over 220 feet; the surface 
slopes at a rate of 15-25 feet per mile south and south­
east. Only the eastern edge of this fan is present in the 
Hyannis quadrangle. 

SANDWICH MORA INE DEPOSITS 
The Sandwich moraine, mapped by Mather and others 

(1942, p. 1143) , extends into the quadrangle, where it 
forms a prominent ridge well above the other glacial 
deposits. On the westem part of the moraine, large-scale 
linear features are roughly parallel, or in a few places 
roughly norffial to, the moraine trend. Parallel-trending 
features may be push ridges formed by advancing ice or 
accumulations of drift marking minor ice-front still­
stands. Ridges trending roughly normal to the moraine 
may be ice-channel fillings . Near Mary Dunn Road small 
festoon-shaped ridges can be seen in aerial photographs. 
Elsewhere the moraine surface consists mostly of many 
closed depressions and knobs. 

HARWICH OUTWASH-PLAIN DEPOSITS 
The ice-contact head of the Harwich outwash plain lies 

in the vicinity of Cummaquid, Mass. From there the out­
wash plain slopes southeast through a gap in the Sand­
wich moraine in the Dennis quadi·angle (Oldale, 1974) 
and then reenters the quadrangle south of the m01·aine. 

GLACIAL-LAKE DEPOSITS 
On the basis of borehole data, clayey silt (Qlll is 

inferred beneath the outwash plains and possibly even 
beneath the Sandwich moraine. This unit is believed to 
have been deposi ted in a lake dammed by the retreating 
ice fron t and by Martha's Vineyanl and Nantucket is­
lands. 

Younger glacial-lake deposits (Ql2 ) ovel"lie moraine 
and Harwich outwash-plain deposi ts. These lake deposits 
have maximum altitudes of 50 to 60 feet. The clayey silt 
was named the Barnstable Sei·ies by Shaler (1898, p. 
539), who recognized clayey silt in many places along the 
Cape Cod Bay shore. He assigned the silt to an older 
glaciation and thought it to be marine. However, as the 
clayey silt overlies mo1·aine and outwash deposits, it can 
not be older than the last g laciation. It must, therefore, 
be a fresh-water deposit, a s sea level at that time was far 
below its present level. 

VALLEY-FLOOR DEPOSITS 
Valley-floor deposits occupy valleys, called ful'l'OWS by 

Mathe!' and others (1942, p. 1160), which are not now 
being cut in the outwash plains. The valleys are late­
glacial features, as the thalwegs a1·e inte1Tupted by ket­
tle holes and late-glacial eolian deposit,; cap the valley­
floor deposits. These valleys pi·obab!y were ei·oded when 
a shallow layer of pel'manently frozen ground made the 
outwash impermeable. They are not melt-wate1· ca1·ved, 
as melt water genernlly flows in sediment-choked braided 
streams that completely cross t he out wash plain. 

LATE-GLACIAL EOLIAN DEPOSITS 
The g lacial deposits are overlain in most places by a 

wind-deposited mantle 1 to 3 feet thick. The eolian sand, 
silt, and wind-cut stones are in places mixed by frost ac­
tion with the underlying coarser glacial deposits, result­
ing in a ti ll-like texture. 

POST-PLEISTOCENE DEPOSITS 

MARSH AND SWAMP DEPOSITS 
Salt-marsh deposits lie in the drowned parts of valleys, 

in kettle holes breached by the sea, and in estuaries pro­
tected on the seaward side by spits. Thickness is con­
trolled largely by the altitude of the underlying glacial 
surface. A maximum thickness of about 30 feet was de­
termined for the Great Marshes by Redfield ( 1965, p. 
54). Radiocarbon dates from the base of the salt-water 
peat in the Great Marshes rnnge from 3,660 ± 250 years 
B.P. (Before Present) to 1,040 ± years B.P. ( Redfield 
and Rubin, 1962, p. 1731 ) . 

Fresh-water marshes and swamps occur mostly where 
valleys and kettle holes intersect the water table. Locally, 
these deposits occur at higher altitudes, where till or silt 
and clay have caused perched water tables. 

BEACH DEPOSITS 
Wave-eroded glacial deposits are sorted, transported, 

and redeposited to form spits and beaches. The most ex­
tensive beach deposits form Sandy Neck spit. Growth 
stages of the spit, taken from Redfield ( 1965, p. 53), are 
shown on the geologic map. 

DUNE DEPOSITS 
Dunes are found on spits and on glacial deposits near 

the shore. Dune deposits commonly range from a few to 
30 feet in thickness, but on Sandy N eek they are as much 
as 65 feet thick. There, roughly parabolic rows of dune 
crests are separated by blowouts oriented roughly north­
south. Blowouts are floored· with younger irregularly 
shaped dunes. Much of the dune area has been eroded by 
subsequent wind action, exposing dune bedding and, lo­
cally, buried soil horizons. Roots, tree stumps, and, in 
some places, hearth stones and midden debris of Indian 
origin are associated with these soil horizons. Most slip 
faces are stabilized by pine and oak forest. Most active 
slip faces are along the marsh side of Sandy Neck. 

QUATERNARY HISTORY 

STRATIGRAPHY OF THE GLACIAL DEPOSITS 
The inferred stratigraphic relationships are shown on 

the correlation chart / table 21 . The kames -are cleal']y the 
oldest surficial unit, because their position is well south 
of the ice-contact heads of t he outwash plains and the 
Sandwich moraine, and because ice must have occupied 
the area while the kames were deposited. Exact age rela­
tionships between the Barnstable outwash-plain deposits 
and the Mashpee pitted-plain deposits are not clear, but 
they are probably contemporaneous. The deposits of both 
are older than the Sandwich moraine. Harwich outwash­
plain deposits overlie the moraine and head north of it. 
Lake deposits overlying the ice-contact head of the Har­
wich outwash plain along the shore of Cape Cod Bay are 
the youngest glacial deposits. 

PLEISTOCENE HISTORY 
The Hyannis quadrangle deposits probably represent 

the last glaciation (Woodfordian}, as only one basal ( ?) 
till /Oldale and Tuttle, 1965) is recogn ized in the sub­
surface and the sul'fi.cial deposits are only locally over­
lain by till. This till ean be aeeounted for either by minor 
i·eadvances of the last ice or as flowtill. Older Pleistocene 
events may be represented at depth, as most of the glacial 
and interglacial stages have been recognized on Martha's 
Vineyard (Kaye, 19641 and in Boston (Kaye, 1961, p. 
B75l. 

During the last advance, the ice overran and incorpor­
ated into the glacial drift older glac-ial deposits and pre­
Pleistocene coastal-plain and shelf sediments. The 
maximum advance of the ice is marked by the terminal 
moraine on Martha's Vineyard and Nantucket. 

The age of the surficial glacial deposits on Cape Cod is 
established by two radiocarbon dates. A date (15,300 ± 
800 years B.P. ) from Zacks Cliff, Martha's Vineyard 
(fig. 1) , was derived from leaves in a clay stratigraph­
ically below ablation till and outwash (Kaye, 1964, p. 
C138; Schafer and Hartshorn, 1965) , and indicates that 
ice occupied Cape Cod at that time. A date on shells from 
a glaciomarine clay near Boston ( Kaye and Barghoorn, 
1964, p. 75) shows that the ice had retreated from Cape 
Cod Bay by 14,250 ± 200 years B.P. 

With about 1,000 years for the retreat of the ice from 
the islands to the Boston area, retreat across the 
Hyannis quadrangle must have taken only a few hundred 
years. Even at this rate, retreat was not uniform and 
major stillstands occurred when the kame, outwash­
plain, moraine, and younger lake deposits were formed. 
Between stillstands retreat must have been very rapid. 
Glacier retreat was characterized by lobation, and the 
Jobes, from west to east, were the Buzzards Bay lobe, the 
Cape Cod Bay Jobe, and the South Channel lobe (Wood­
worth and Wigglesworth, 1934, p. 16). Sediments in the 
Hyannis quadrangle were deposited by the Cape Cod Bay 
lobe. 

Stagnation and downwasting caused the retreat of the 
ice from Martha's Vineyard and Nantucket. A progla­
cial lake formed north of the islands, as shown by the 
thick section of clayey silt in boreholes (fig. 11 (Koteff 
and Cotton, 1962; Maevsky and Drake, 1963). Large 
holes formed in stagnant ice when the front was some­
what south of the quadrangle, and stratified drift was 
deposited in the holes as kames. As the ice continued to 
retreat, many ice blocks were buried by outwash and 
eventually melted to form kettle holes. The Mashpee pit­
ted plain and the Barnstable outwash plain were depos­
ited beyond a stagnant ice front, possibly in a position 
approximated by the Sandwich moraine. 

After the outwash plains formed, a change in the reg­
imen of the glacier resulted in an active ice front with 
advance essentially balanced by melting, and deposition 
of the Sandwich moraine took place. At times ice over­
rode the outwash plains and deformed these deposits. In 
some places outwash was displaced upward many feet, 
as suggested by the fine-grained deposits located high on 
the south-facing slope of the moraine. Glacial till and 
large boulders were deposited atop the outwash in many 
places during these advances. 

Stagnation followed the formation of the moraine. To 
the east the ice front retreated a short distance north­
ward before deposition of the Harwich outwash plain 
took place. In the western part of the quadrangle, the ice 
may have remained against the Sandwich moraine depos­
iting only a little sediment. 

A final stillstand a short distance fmther north is rep­
resented by ice-contact lake deposits. These sediments 
were deposited in a narl'OW Jake dammed by the moraine 
and outwash-plain deposits, by high !and south of Plym­
outh {fig. 1) and by the South Channel lobe. Initial lake 
drainage was p1·obably southwest into Buzzards Bay 
through a spillway now occupied by Cape Cod Canal /fig. 
11. As the ice continued to 1·etreat, the lake greatly in­
creased in size. Deltas on outei- Cape Cod I Oldale, 1968 1 
and at Duxbury (fig. 1) (Chute, 1965) wei·e deposited 
at this time. Final drainage took place when the ice re­
treated north of High Head /fig. 1 ). 

A pel'iglacial climate and eolian activity followed gla­
cier retreat /Schafer and Hartshom, 1965, p. 124 1. 
Tundra vegetation (Davis, 1967, p. 26) characterized the 
environment. A permafrost layel' pl'evented water from 
percolating into the ground, and surface runoff cut the 
stream valleys. Tundra and possibly permafrost per­
sisted in southern New England until 12,000 years ago 
/Davis, 1967, p. 26) . Eventually a milder climate thawed 
the permafrost, ending fluvial erosion. The remaining 
buried ice blocks melted, forming kettle holes and leaving 
the landscape much as it appeai·s today. 

POST-PLEISTOCENE HISTORY 
During the maximum glacial advance, sea level was 

about 400 feet below its present level (Milliman and 
Emery, 1968, p. 1122 ). As the glaciers melted, water re­
turned to the oceans and sea level rose. However, in gla­
ciated regions the postglacial change in sea level was not 
simply upward, for sea level was a result of eustatic rise 
and crustal rebound. In Boston a late-glacial, relatively 
high, stand took place around 14,000 years ago. This was 
followed by a lower-than-present sea level between 
12,500 and 10,000 years ago {Kay and Barghoorn, 1964, 
p. 76) . A similal' sea-level history probably occurred on 
Cape Cod, although the late-glacial high remained below 
present sea level. 

Since 10,000 years B.P., relative sea level has risen 
continuously, but at an ever dec1·easing rate /Milliman 
and Emei·y, 1968, p. 1122). The rate and amount of sub­
mergence in the Hyannis quadrangle during the past few 
thousand years has been determined by Redfield and 
Rubin /1962, p. 1730). From 3,700 years ago to 2,100 
years ago, sea level mse from minus 23 feet relative to 
present sea level to minus 7 feet. Since 2,100 years ago 
the rate of sea-level rise has been only one third as much. 

As submergence progressed, waves eroded the glacial 
deposits to form sea cliffs. Eroded material has been 
transported, sorted, and redeposited by waves and long­
shore currents to form the beaches, spits, and offshore 
tidal flats. In areas protected from wave attack, marsh 
deposits have formed. 

The histories of the Great Marshes and Sandy Neck 
are closely related. The marsh has grown from a few 
patches of peat, protected by a spit a little over a mile 
long 3,300 years ago, to a marsh of several square miles 
behind a spit 6 miles long today (Redfield, 1965). 

Sand dunes have formed atop the spits and on the gla­
cial deposits adjacent to the coast. Dunes overlying gla­
cial deposits and smaller spits are probably only a few 
tens of years old, as they have sparse vegetation and no 
soil. On Sandy Neck, however, some of the dunes may be 
as old as the spit, and their history is closely related to 
the growth of the spit. The bulk of the dunes become pro­
gressively younger from west to east, as their formation 
depended upon the eastward growth of Sandy N eek. 
Parabolic dune sets appear to mark roughly the former 
positions of the east end of the spit, as is suggested by 
the lines showing the formation of the spit taken from 
Redfield (1965, p. 53) . A similar relationship is proposed 
by Zeigler and others (1965, p. R305) for some of the 
parabolic dunes on the Provincetown spit. Even though 
the dunes may range in age from about 3,300 years to 
modern, they are active along the whole length of the 
spit today. 

Fresh-water swamps and marshes began to form soon 
after the ice retreated, initially as a result of poor drain­
age caused by permafrost. Later, as sea level rose, the 
water table rose, forming shallow ponds in the kettle 
holes and ground-water streams in the dry valleys. 
Swamps and marshes began to grow along the shores of 
these water bodies and eventually filled the bottoms of 
the kettle holes and furrows locally. 

APPLIED GEOLOGY 
The glacial deposits make up the major mineral re­

source and provide an ample source of sand and gravel, 
as well as large boulders for riprap. Glacial silt and clay 
were once used to make bricks. Permeable glacial de­
posits provide abundant ground water. However, any 
great increase in ground-water usage, a decrease in the 
recharge, or the discharge of used ground water to the 
sea by outfalls might lower the water table, dry up 
swamps and shallow ponds, and reduce the size of deeper 
ponds. Another potential threat to this resource is con­
tamination of the water supply by improper disposal of 
waste products. 

Major geological hazards are the susceptibility of low­
lying nearshore areas to coastal flooding and to wave 
erosion during northeast storms and hurricanes. Erosion 
and flooding along the Nantucket Sound shore during 
the September 1944 hurricane have been described by 
Chute (1946). Coastal flooding of as much as 10 feet 
above mean sea level occurred. Shore erosion resulted in 
retreat of the shoreline by as much as 40 to 50 feet where 
the prestorm beach was narrow and the sea cliffs were 
low. 
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TABLE 2.-Correlation chart showing stratigraphic relationships of the gl.acial deposits between the Hyannis 
quadrangle and adjacent areas of inner Cape Cod 

Time units 
Surficial deposits Subsurface deposits 

Hvannis ouadran!!"le Inner Cane Cod Inferred 

Younger g lacial-lake and Lake deposits and lake-
ice-contact deposits bottom deposits (Oldale, 

1969a) 

Harwich outwash-plain Harwich outwash-plain 
deposits deposits (Oldale, 1969a ) 

Kame deposits (Oldale, 1974) 

Sandwich moraine deposits Sandwich moraine (Mather 
and others, 1942) 

Sandwich moraine deposits 
(Oldale, 1969a) 

Pleistocene 
Buzzards Bay moraine 

( W oodfordian ) 
{Mather and others, 1942) 

Barnstable outwash-plain Mashpee pitted plain 
and Mashpee pitted- (Mather and others, 1942) 
plain deposits 

Kame deposits Ghatham kame deposits 
(Oldale and Koteff, 
1970 ) 

Lacustrine clayey silt 
(Koteff and Cotton, 1962; 
Maevsky and Drake, 1963) 

Till ( Koteff and Cotton, 
1962) 

Unconformity Unconformity 

Paleozoic Bedrock, mostly granitic, 

and includes some meta-
Precam- sedimentary rock (Oldale, 

brian 1969b; Koteff and Cotton, 
1962) 
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DESCRIPTION OF MAP UNITS 

A thin surface layer of wind-deposited sand and silt, 
containing ventifacts and generally mixed with the 
underlying glacial deposits, is present over much of 
the glacial drift, but is not shown . 

ARTIFICIAL FILL AND GRADED AREAS - Mostly 
locally derived sand, gravel , and boulders 

CRANBERRY BOG - Generally fresh-water marsh or 
swamp deposits capped by a top-dressing of sand 

DUNE DEPOS ITS, UNDIFFERENTIATED (HOLO­
CENE) - Wind-deposited sand and granules in ir­
regularly shaped dunes or roughly parabolic-shaped 
dunes. Generally underlain by beach,marsh, or 
glacial deposits. Planar bedding and eolian cross­
bedding common. Beds generally an inch to a few 
inches thick 

FOREDUNE DEPOS ITS (HOLOCENE) - Wind­
deposited sand and granules in a ridge parallel to 
the shore and seaward of the undifferentiated 
dune deposits . Underlain by beach or older dune 
deposits. Planar bedding and eolian crossbedding 
common. Beds generally an inch to a few inches 
thick 

BEACH AND DUNE DEPOSITS, UNDIFFERENTI­
ATED (HOLOCENE) - Wind-deposited sand and 
granules in the form of small isolated dunes, and 
beach deposits composed of sand and pebbles to 
sma!I boulders (about I ft maximum dimension) 

BEACH DEPOSITS (HOLOCENE) - Sand to small 
boulders (about 1 ft maximum dimension) depos­
ited above sea level as narrow strands or spits. 
Beach deposits below sea cliffs cut in glacial de­
posits locally contain large boulders (a few feet 
to a few tens of feet maximum dimension). Beach 
deposits mostly planar bedded, some current 
bedding. Beds generally 1 in. to several inches 
thick 

STORM-BEACH DEPOSITS (HOLOCENE) - Sand to 
small boulders (about 1 ft maximum dimension) in 
the bottom of storm sluiCes and as overwash fans. 
The storm sluice (Howard, 1939, p. 405), a flat­
floored depression underlain by gravelly sand, near 
the east end of Sandy Neck was probably cut in 

the dunes during a major northeast storm. Planar, 
current, and deltaic bedding common. Beds gener­
ally an inch to several inches thick 

MARINE DEPOSITS (HOLOCENE) - Sand, gravel, 
silt, and clay deposited offshore by waves and 
currents. Shown only on cross section 

LAKE-SHORE DEPOS ITS (HOLOCENE AND 
PLEISTOCENE) - Formed along the shores of 
ponds and lakes. Includes beaches and small spits 
composed of well-sorted sand and gravel, lag de­
posits composed mostly of pebble to cobble gravel 
as a result of wave winnowing of the glacial depos­
its, and levee-shaped ridges one to two feet high 
composed of poorly sorted sand and gravel pushed 
up by expanding lake ice 

MARSH AND SWAMP DEPOS ITS (HOLOCENE AND 
PLEISTOCENE) - Mostly decaying marine-marsh 
plants mixed with varying amounts of sand, silt, and 
clay. Underlain by glacial deposits, by marine sand, 
silt, and clay, or by fresh-water pond and peat de· 
posits; locally overlain by dune and beach deposits. 
Capped by live marine marsh plants. Includes lesser 
amounts of fresh-water swamp and marsh deposits 

VALLEY-FLOOR DEPOSITS (HOLOCENE AND 
PLEISTOCENE) - Sediments deposited in the floors 
of valleys (furrows) cut into the outwash plains. 
Mostly gravelly sand and pebble to small-boulder 
gravel 

YOUNGER GLACIAL-LAKE AND ICE-CONTACT 
DEPOSITS (PLEISTOCENE) - Associated with a 
proglacial lake in Cape Cod Bay. Mostly a discon­
tinuous veneer of clay and silt (Barnstable Series of 
Shaler, 1898) over ice-contact deposits composed of 
gravelly sand, gravel, till, and large boulders (a few 
tens of feet maximum dimension). Silt and clay 
massive to laminated, locally deformed. Sand and 
gravel planar and current bedded . Beds a foot to a 
few feet thick 

HARWICH OUTWASH-PLAIN DEPOSITS (PLEIS­
TOCENE) - South of the Sandwich moraine, 
mostly gravelly sand with some pebble to cobble 
gravel. North of the Sandwich moraine, ice-contact 
deposits of the outwash plain include till, silt, clay, 
and large to very large boulders (a few tens of feet 
maximum dimension). Sand grains mostly quartz, 
angular to subround; feldspar and glauconite com­
mon accessories. Stones mostly granitic ; angular to 
subround. Deposits generally planar bedded; cur­
rent bedding and current ripples common. Beds dip 
gently southward, except locally where collapsed. 
Beds mostly a foot to several feet thick 

SANDWICH MORAINE DEPOSITS (PLEISTOCENE) -
Mostly silty to sandy till and large to very large 
boulders (a few feet to a few tens of feet maximum 
dimension). Includes lenses and pockets of strati-
fied clayey silt, sand, and gravel. Two exposures at 
altitudes of 100 and 120 ft on the south-facing front 
of the moraine include thin-bedded or laminated 
clayey silt and very fine sand. The till of the mo­
raine may be a veneer that overlies well-sorted sand 
and gravel, as suggested by seVeral deeper expo-
sures in the moraine and by the logs from BH 197, 
BH228, BH238, and BH245 (table 3). Sand grains 
in the moraine angular to subround; glauconite and 
feldspar common accessories. Stones angular to sub­
round; mostly granitic. Stratified deposits within 
the moraine genera!ly planar bedded; current bed­
ding and current ripples common. Beds dip gently 
southward, except where collapsed or deformed 
locally by ice push. Normal faulting common in 
collapsed deposits 

MASHPEE PITTE D-PLAIN DEPOSITS (PLEISTO­
CENE) - Mostly gravelly sand with some pebble 
to small boulder (less than 1 ft maximum dimen­
sion) gravel. Sand angular to subround, Pebbles an­
gular to subround, mostly granitic. Beds dip gently 
southward, locally faulted or more steeply dipping 
where collapsed. Bedding mostly planar; current 
bedding and current ripples common. Beds gener­
ally 6 in. to a few feet thick 

BARNSTABLE OUTWASH-PLAIN DEPOSITS (PLEIS­
TOCENE) - Mostly gravelly sand with some peb-
ble to small boulder (maximum dimension less than 
1 ft) gravel. North part of the outwash plain depos­
its indudes some till, clayey silt, and large boulders 
(maximum dimension a few feet} . Feldspar and 
glauconite common accessories in the sand. Sand 
grains mostly angular to subround. Stones generally 
granitic; angular to su bround. Bedding mostly 
planar; current bedding and current ripples com­
mon. Beds generally 6 in. to a few feet thick. Beds 
dip gently southward, locally faulted or more steep­
ly dipping where collapsed. Outwash sand and 
gravel may overlie silt and clay as suggested by 
BH179 (table 3) 
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KAME DEPOSITS (PLEISTOCENE) - Mostly gravelly 
sand with some pebble to small boulder (maximum 
dimension less than 1 ft) gravel. Includes scattered 
boulders as much as a few tens of feet maximum 
dimension. On Great Island stratified sand and grav­
el overlain in many places by brown sandy to silty 
till or flow till as much as 10 ft thick that contains 
abundant ventifacts. Sand grains mostly angular to 
subround. Stones mostly granitic, angular to sub­
round. Sand and gravel planar or current bedded. 
Beds generally 6 in. to a few feet thick. Beds dip 
gently southward, locally faulted or more steeply 
dipping where collapsed 

OLDER GLACIAL-LAKE DEPOSITS (PLEISTO­
CENE) - Glacial-lake deposits inferred below the 
sand and gravel of the outwash plains. Shown only 
on cross section. The inference is based on bore­
hole data from the Harwich quadrangle (Koteff and 
Cotton, 1962) and the Dennis quadrangle (Maevsky 
and Drake, 1963), showing thick coarse to clayey 
silt deposits beneath outwash sand and gravel, and 
on data from BH179 (table 3) that showed 35 ft 
of fine sand to clay beneath the sand and gravel of 
the Barnstable outwash plain 

TILL DEPOSITS (PLEISTOCENE) ~ Inferred from 
the seismic data at Kalmus Park (table 1, site B), 
where a seismic layer with a velocity of 7,650 ft/sec 
is interpreted to represent 345 ft of compact till, 
and from the Harwich borehole, which showed 116 
ft of compact till (Koteff and Cotton, 1962) with 
a similar seismic velocity (O!dale and Tuttle, 1965, 
p. D 104). In both places the thick accumulation 
of till is associated with broad deep valleys in the 
basement surface. Shown only on cross section 

BEDROCK - Metamorphic, igneous, and sedimentary 
rocks of Precambrian to early Mesozoic(?) age. 
Shown only on cross section. Altitude of the base­
ment surface inferred from seismic data within and 
outside the quadrangle (Oldale, 1969b) 

----- Contact - Long dashes where approximately located; 
short dashes where inferred 

----- Lineament - Axis of major linear teature on the Sand­
wich moraine. These features include push ridges 
where ice overrode the outwash plains, accumulat­
ions of drift marking former positions of the ice 
front, and ice-channel fillings 

\....A.A..A.) Area of small festoon-shaped parallel ridges - Possibly 
marking former positions of the ice front on the 
Sandwich moraine 
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Lineament formed by dune crests on Sandy Neck 

Contour showing the inferred pre-collapse and pre­
erosion outwash plain surface - Datum is mean 
sea level 

Contour showing the altitude , in feet below sea level, 
of the buried bedrock surface - Datum is mean 
sea level 

Location of boreholes described in table 3 

Shoreline of Sandy Neck at various stages in its devel­
opment - Numbers indicate years before present. 
From Redfield (1965, p. 53} 

Seismic station described in table 1 

Exposure or auger hole 

Pit - Extent of large pits; shown by hachures -
Letter symbols on map and in table 3 show texture 
of deposits: s, sand; vfs, very fine sand; fs, fine sand; 
ms, medium sand; cs, coarse sand; vcs, very coarse 
sand; g, gravel; pg, pebble gravel; cg, cobble gravel; 
bg, boulder gravel;p, pebbles;c, cobbles;b, boulders, 
sl, silt; cl, clay; t, !!IL Superposition of symbols in­
dicates section, comma reads "and", hyphen reads 
"to." Where more than one texture is noted , they 
are listed in order of decreasing abundance 

TABLE 3.-Selected wells and test IIOles from the Hy­
annis quadrangle. Data from Maevksy and Drake 
(1963) . For meaning of texture symbols, see map ex­
planation. 
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